
1

Create with Code
Unit 1 Lesson Plans

© Unity 2021 Create with Code - Unit 1

2

1.1 Start your 3D Engines

Steps:
Step 1: Make a course folder and new project

Step 2: Import assets and open Prototype 1

Step 3: Add your vehicle to the scene

Step 4: Add an obstacle and reposition it

Step 5: Locate your camera and run the game

Step 6: Move the camera behind the vehicle

Step 7: Customize the interface layout

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson, you will create your very first game project in Unity Hub. You
will choose and position a vehicle for the player to drive and an obstacle for
them to hit or avoid. You will also set up a camera for the player to see
through, giving them a perfect view of the scene. Throughout this process,
you will learn to navigate the Unity Editor and grow comfortable moving
around in 3D Space. Lastly, you will customize your own window layout for
the Unity Editor.

Project
Outcome:

You will have a vehicle and obstacle positioned on the road and the camera
set up perfectly behind the vehicle. You will also have a new custom Unity
layout, perfectly optimized for editing.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create a new project through Unity Hub
- Navigate 3D space and the Unity Editor comfortably
- Add and manipulate objects in the scene to position them where you want
- Position a camera in an ideal spot for your game
- Control the layout of Unity Editor to suit your needs

© Unity 2021 Create with Code - Unit 1

3

Step 1: Make a course folder and new project
The first thing we need to do is create a folder that will hold all of our course projects, then create a new
Unity project inside it for Prototype 1.
1. On your desktop (or somewhere else you will remember),

Right-click > create New Folder, then name it “Create with Code”
2. Open Unity Hub and select the Projects tab from the left

sidebar
3. Select New to create a new project, using one of the supported

versions of Unity (2018.4LTS, 2019.4LTS, or 2020.3LTS)
4. Select the 3D template, name the project “Prototype 1”, and set

the location to the new “Create with Code” folder.
5. Select Create, then wait for Unity to open your new project

- Don’t worry: Unity might
take a while to open, so
just give it some time

© Unity 2021 Create with Code - Unit 1

4

Step 2: Import assets and open Prototype 1
Now that we have an empty project open, we need to import the assets for Prototype 1 and open the
scene
1. Click to download the Prototype 1 Starter Files, then
extract the compressed folder.
Windows Right-click on the file > Extract All
Mac Double-click on the file

2. From the top menu in Unity, select Assets > Import
Package > Custom Package, then navigate to the folder
you extracted and select the
Prototype-1_Starter-Files.unitypackage file.

3. In the Import Unity Package window that pops up, select
Import and wait for the assets to import.

4. In the Project window, in Assets > Scenes > double-click on
the Prototype 1 scene to open it

5. Delete the Sample Scene without saving
6. Right-click + drag to look around at the start of the road

- Warning: You’re free to look
around, but don’t try moving
yet

- Warning: Be careful playing
with this interface, don’t click
on anything else yet

- New Concept: Project Window

© Unity 2021 Create with Code - Unit 1

https://connect-prd-cdn.unity.com/20210507/6c595e73-affa-42f7-ae53-9d7e33e7247a/Prototype%201%20-%20Starter%20Files.zip?_ga=2.24002682.1186801097.1620052249-59568313.1601905412

5

Step 3: Add your vehicle to the scene
Since we’re making a driving simulator, we need to add our own vehicle to the scene.

1. In the Project Window, open Assets > Course Library >
Vehicles, then drag a vehicle into the Hierarchy

2. Hold right-click + WASD to fly to the vehicle, then try to
rotate around it

3. With the vehicle selected and your mouse in the Scene
view, Press F to focus on it

4. then use the scroll wheel to zoom in and out and hold the
scroll wheel to pan

5. Hold alt+left-click to rotate around the focal point or hold
alt+right-click to zoom in and out

6. If anything goes wrong, press Ctrl/Cmd+Z to Undo until it’s
fixed

- New: Hierarchy
- New: Undo (Cmd/Ctrl + Z) and

Redo (Cmd+Shift+Z / Ctrl+Y)
- Warning: Mouse needs to be in

scene view for F/focus to work
- New Technique: Scroll Wheel

for Zoom and Pan

© Unity 2021 Create with Code - Unit 1

6

Step 4: Add an obstacle and reposition it
The next thing our game needs is an obstacle! We need to choose one and position it in front of
the vehicle.

1. Go to Course Library > Obstacles and drag an obstacle
directly into the Scene view

2. In the Inspector for your obstacle, in the top-right of the
Transform component, click the more options button >
Reset Position
Note: The more options button may appear as three
vertical dots or a gear icon, depending on your version of
Unity

3. In the Inspector, change the XYZ Location to x=0, y=0,
z=25

4. In the Hierarchy, Right-click > Rename your two objects as
“Vehicle” and “Obstacle”

- New Concept: XYZ location,
rotation and scale

- New Concept: Inspector

© Unity 2021 Create with Code - Unit 1

7

Step 5: Locate your camera and run the game
Now that we’ve set up our vehicle and obstacle, let’s try running the game and looking through
the camera.

1. Select the Camera in the hierarchy, then press F to focus
on it

2. Press the Play button to run your Game, then press Play
again to stop it

- New Concept: Game View vs
Scene View

- New Technique: Stop/Play
(Cmd/Ctrl + P)

Step 6: Move the camera behind the vehicle
In order for the player to properly view our game, we should position and angle the camera in a
good spot behind the vehicle

1. Use the Move and Rotate tools to move the camera behind the
vehicle looking down on it

2. Hold Ctrl/Cmd to move the camera by whole units

- New Technique:
Snapping (Cmd/Ctrl +
Drag)

- New Concept: Rotation
on the XYZ Axes

© Unity 2021 Create with Code - Unit 1

8

Step 7: Customize the interface layout
Last but not least, we need to customize the Unity Editor layout so that it’s perfect for editing
our project.

1. In the top-right corner, change the layout from “Default” to “Tall”,
2. Move Game view beneath Scene view
3. In the Project window, click on the little drop-down menu in the

top-right and choose “One-column layout”
4. In the layout Dropdown, save a new Layout and call it “My

Layout”

- New Concept: Layouts

Lesson Recap
New
Functionality

● Project set up with assets imported
● Vehicle positioned at the start of the road
● Obstacle positioned in front of the vehicle
● Camera positioned behind vehicle

New Concepts
and Skills

● Create a new project
● Import assets
● Add objects to the scene
● Game vs Scene view
● Project, Hierarchy, Inspector windows
● Navigate 3D space
● Move and Rotate tools
● Customize the layout

Next Lesson ● We’ll really make this interactive by writing our first line of code in C# to
make the vehicle move and have it collide with other objects in the scene

© Unity 2021 Create with Code - Unit 1

9

1.2 Pedal to the Metal

Steps:
Step 1: Create and apply your first script

Step 2: Add a comment in the Update() method

Step 3: Give the vehicle a forward motion

Step 4: Use a Vector3 to move forward

Step 5: Customize the vehicle’s speed

Step 6: Add RigidBody components to objects

Step 7: Duplicate and position the obstacles

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson you will make your driving simulator come alive. First you will
write your very first lines of code in C#, changing the vehicle’s position and
allowing it to move forward. Next you will add physics components to your
objects, allowing them to collide with one another. Lastly, you will learn how
to duplicate objects in the hierarchy and position them along the road.

Project
Outcome:

You will have a moving vehicle with its own C# script and a road full of
objects, all of which may collide with each other using physics components.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create C# scripts and apply them to objects
- Use Visual Studio and a few of its basic features
- Write comments to make your code more readable
- Utilize fundamental C# methods and classes like transform.Translate and

Vector3
- Add Rigidbody and Collider components to allow objects to collide

realistically
- Duplicate objects in the hierarchy to populate your scene

© Unity 2021 Create with Code - Unit 1

10

Step 1: Create and apply your first script
We will start this lesson by creating our very first C# script that will control the vehicle’s
movement.
1. In the Project window, Right-click > Create > Folder

named “Scripts”
2. In the “Scripts” folder, Right-click > Create > C#

Script named “PlayerController”
3. Drag the new script onto the Vehicle object
4. Click on the Vehicle object to make sure it was

added as a Component in the Inspector

- New Concept: C# Scripts
- Warning: Type the script name as

soon as the script is created, since it
adds that name to the code. If you
want to edit the name, just delete it
and make a new script

- New Concept: Components

Step 2: Add a comment in the Update() method
In order to make the vehicle move forward, we have to first open our new script and get familiar
with the development environment.

1. Double-click on the script to open it in Visual
Studio

2. In the Update() method, add a comment that you
will: // Move the vehicle forward

- New: Start vs Update functions
- New: Comments

void Update()
{

// Move the vehicle forward
}

© Unity 2021 Create with Code - Unit 1

11

Step 3: Give the vehicle a forward motion
Now that we have the comment saying what we WILL program - we have to write a line of code
that will actually move the vehicle forward.

1. Under your new comment, type transform.tr, then
select Translate from the autocomplete menu

2. Type (, add 0, 0, 1 between the parentheses, and
complete the line with a semicolon (;)

3. Press Ctrl/Cmd + S to save your script, then run
your game to test it

- New Function: transform.Translate
- New Concept: Parameters
- Warning: Don’t use decimals yet. Only

whole numbers!

void Update()
{

// Move the vehicle forward
transform.Translate(0, 0, 1);

}

Step 4: Use a Vector3 to move forward
We’ve programmed the vehicle to move along the Z axis, but there’s actually a cleaner way to
code this.

1. Delete the 0, 0, 1 you typed and use auto-complete
to replace it with Vector3.forward

- New Concept: Documentation
- New Concept: Vector3
- Warning: Make sure to save time and

use Autocomplete! Start typing and VS
Code will display a popup menu with
recommended code.

void Update()
{

// Move the vehicle forward
transform.Translate(0, 0, 1 Vector3.forward);

}

© Unity 2021 Create with Code - Unit 1

12

Step 5: Customize the vehicle’s speed
Right now, the speed of the vehicle is out of control! We need to change the code in order to
adjust this.

1. Add * Time.deltaTime and run your game
2. Add * 20 and run your game

- New Concept: Math symbols in C#
- New Function: Time.deltaTime

void Update()
{

// Move the vehicle forward
transform.Translate(Vector3.forward * Time.deltaTime * 20);

}

Step 6: Add RigidBody components to objects
Right now, the vehicle goes right through the box! If we want it to be more realistic, we need to
add physics.

1. Select the Vehicle, then in the hierarchy click Add
Component and select RigidBody

2. Select the Obstacle, then in the hierarchy click Add
Component and select RigidBody

3. In the RigidBody component properties, increase
the mass of vehicle and obstacle to be about what
they would be in kilograms and test again

- New Concept: Rigidbody Component
- New Concept: Collider Component
- Tip: Adjust the mass of the vehicle and

the obstacle, and test the collision
results

© Unity 2021 Create with Code - Unit 1

13

Step 7: Duplicate and position the obstacles
Last but not least, we should duplicate the obstacle and make the road more treacherous for
the vehicle.

1. Click and drag your obstacle to the bottom of the
list in the hierarchy

2. Press Ctrl/Cmd+D to duplicate the obstacle and
move it down the Z axis

3. Repeat this a few more times to create more
obstacles

4. After making a few duplicates, select one in the
hierarchy and hold ctrl + click to select multiple
obstacles, then duplicate those

- New Technique: Duplicate
(Ctrl/Cmd+D)

- Tip: Try using top-down view to make
this easier

- Tip: Try using the inspector to space
your obstacles exactly 25 apart

Lesson Recap
New
Functionality

● Vehicle moves down the road at a constant speed
● When the vehicle collides with obstacles, they fly into the air

New Concepts
and Skills

● C# Scripts
● Start vs Update
● Comments
● Methods
● Pass parameters
● Time.deltaTime
● Multiply (*) operator
● Components
● Collider and RigidBody

Next Lesson ● We’ll add some code to our camera, so that it follows the player as they
drive along the road.

© Unity 2021 Create with Code - Unit 1

14

1.3 High Speed Chase

Steps:
Step 1: Add a speed variable for your vehicle

Step 2: Create a new script for the camera

Step 3: Add an offset to the camera position

Step 4: Make the offset into a Vector3 variable

Step 5: Smooth the Camera with LateUpdate

Step 6: Edit the playmode tint color

Example of project by end of lesson

Length: 50 minutes

Overview: Keep your eyes on the road! In this lesson you will code a new C# script for
your camera, which will allow it to follow the vehicle down the road and give
the player a proper view of the scene. In order to do this, you’ll have to use a
very important concept in programming: variables.

Project
Outcome:

The camera will follow the vehicle down the road through the scene, allowing
the player to see where it’s going.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Declare variables properly and understand that variables can be different

data types (float, Vector3, GameObject)
- Initialize/assign variables through code or through the inspector to set

them with appropriate values
- Use appropriate access modifiers (public/private) for your variables in

order to make them easier to change in the inspector
- Use the Update and LateUpdate appropriately in order to call one action

after another has already happened

© Unity 2021 Create with Code - Unit 1

15

Step 1: Add a speed variable for your vehicle
We need an easier way to change the vehicle’s speed and allow it to be accessed from the
inspector. In order to do so what we need is something called a variable.
1. In PlayerController.cs, add public float speed =

5.0f; at the top of the class
2. Replace the speed value in the Translate method

with the speed variable, then test
3. Save the script, then edit the speed value in the

inspector to get the speed you want

- New Concept: Floats and Integers
- New Concept: Assigning Variables
- New Concept: Access Modifiers

public float speed = 20;

void Update()
{

transform.Translate(Vector3.forward * Time.deltaTime * 20 speed);
}

Step 2: Create a new script for the camera
The camera is currently stuck in one position. If we want it to follow the player, we have to make
a new script for the camera.
1. Create a new C# script called FollowPlayer and

attach it to the camera
2. Add public GameObject player; to the top of the

script
3. Select the Main Camera, then, drag the player

object onto the empty player variable in the
Inspector

4. In Update(), assign the camera’s position to the
player’s position, then test

- Warning: Remember to capitalize your
script name correctly and rename it as
soon as the script is created!

- Warning: It’s really easy to forget to
assign the player variable in the
inspector

- Don’t worry: The camera will be under
the car... weird! We will fix that soon

public GameObject player;

void Update()
{

transform.position = player.transform.position;
}

© Unity 2021 Create with Code - Unit 1

16

Step 3: Add an offset to the camera position
We need to move the camera’s position above the vehicle so that the player can have a decent
view of the game.
1. In the line in the Update method add + new

Vector3(0, 5, -7), then test
- New Concept: Vector3 in place of

coordinates
- Tip: You need “new Vector3()” because

3 numbers in a row could mean
anything

- New Concept: FixedUpdate
- Warning: Remember to update your

comments and maintain their
accuracy!

public GameObject player;

void Update()
{

transform.position = player.transform.position + new Vector3(0, 5, -7);
}

Step 4: Make the offset into a Vector3 variable
We’ve fixed the camera’s position, but we may want to change it later! We need an easier way to
access the offset.

1. At the top of FollowPlayer.cs, declare private
Vector3 offset;

2. Copy the new Vector3() code and assign it to that
variable

3. Replace the original code with the offset variable
4. Test and save

- Don’t worry: Pay no mind to the read
only warning

- Tip: Whenever possible, make variables!
You never want hard values in the
middle of your code

public GameObject player;
private Vector3 offset = new Vector3(0, 5, -7);

void Update()
{
transform.position = player.transform.position + new Vector3(0, 5, -7) offset;

}

© Unity 2021 Create with Code - Unit 1

17

Step 5: Smooth the Camera with LateUpdate
You may have noticed that the camera is kind of jittery as the car drives down the road - let’s fix
that.

1. Test your prototype to notice the jittering camera
as the vehicle drives.

2. In FollowPlayer.cs, replace Update() with
LateUpdate().

3. Save and test to see if the camera is less jittery.

- New Concept: LateUpdate is called
after the Update method, which allows
to more smoothly follow the player.

void LateUpdate()
{
transform.position = player.transform.position + offset;

}

Step 6: Edit the playmode tint color
If we’re going to be creating and editing variables, we need to make sure we don’t accidentally
try to make changes when in “Play mode”

1. From the top menu, go to Edit > Preferences
(Windows) or Unity > Preferences (Mac)

2. In the left menu, choose Colors, then edit the
“Playmode tint” color to have a slight color

3. Play your project to test it, then close your
preferences

- Tip: Try editing a variable in play mode,
then stopping - it will revert

- Warning: Don’t go crazy with the colors
or it will be distracting

© Unity 2021 Create with Code - Unit 1

18

Lesson Recap
New
Functionality

● Camera follows the vehicle down the road at a set offset distance

New Concepts
and Skills

● Variables
● Data types
● Access Modifiers
● Declare and initialize variables
● LateUpdate

Next Lesson ● In the next lesson, we’ll add our last lines of code to take control of our car
and be able to drive it around the scene.

© Unity 2021 Create with Code - Unit 1

19

1.4 Step into the Driver’s Seat

Steps:
Step 1: Allow the vehicle to move left/right

Step 2: Base left/right movement on input

Step 3: Take control of the vehicle speed

Step 4: Make vehicle rotate instead of slide

Step 5: Clean your code and hierarchy

Example of project by end of lesson

Length: 50 minutes

Overview: In this lesson, we need to hit the road and gain control of the vehicle. In order
to do so, we need to detect when the player is pressing the arrow keys, then
accelerate and turn the vehicle based on that input. Using new methods,
Vectors, and variables, you will allow the vehicle to move forwards or
backwards and turn left to right.

Project
Outcome:

When the player presses the up/down arrows, the vehicle will move forward
and backward. When the player presses the left/right arrows, the vehicle will
turn.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Gain user input with Input.GetAxis, allowing the player to move in different

ways
- Use the Rotate function to rotate an object around an axis
- Clean and organize your hierarchy with Empty objects

© Unity 2021 Create with Code - Unit 1

20

Step 1: Allow the vehicle to move left/right
Until now, the vehicle has only been able to move straight forward along the road. We need it to
be able to move left and right to avoid the obstacles.
1. At the top of PlayerController.cs, add a public float

turnSpeed; variable
2. In Update(), add

transform.Translate(Vector3.right *
Time.deltaTime * turnSpeed);

3. Run your game and use the turnSpeed variable
slider to move the vehicle left and right

- New Function: Vector3.right

public float turnSpeed;

void Update()
{

transform.Translate(Vector3.forward * Time.deltaTime * speed);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed);

}

© Unity 2021 Create with Code - Unit 1

21

Step 2: Base left/right movement on input
Currently, we can only control the vehicle’s left and right movement in the inspector. We need to
grant some power to the player and allow them to control that movement for themselves.
1. From the top menu, click Edit > Project Settings, select Input

Manager in the left sidebar, then expand the Axes fold-out to
explore the inputs.

2. In PlayerController.cs, add a new public float horizontalInput
variable

3. In Update, assign horizontalInput = Input.GetAxis("Horizontal");,
then test to see it in inspector

4. Add the horizontalInput variable to your left/right Translate
method to gain control of the vehicle

5. In the Inspector, edit the turnSpeed and speed variables to tweak
the feel

- New: Input.GetAxis
- Tip: Edit > Project

Settings > Input and
expand the Horizontal
Axis to show
everything about it

- Warning: Spelling is
important in string
parameters. Make sure
you spell and
capitalize “Horizontal”
correctly!

public float horizontalInput;

void Update()
{

horizontalInput = Input.GetAxis("Horizontal");

transform.Translate(Vector3.forward * Time.deltaTime * speed);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

© Unity 2021 Create with Code - Unit 1

22

Step 3: Take control of the vehicle speed
We’ve allowed the player to control the steering wheel, but we also want them to control the gas
pedal and brake.
1. Declare a new public forwardInput variable
2. In Update, assign forwardInput =

Input.GetAxis("Vertical");
3. Add the forwardInput variable to the forward

Translate method, then test

- Tip: It can go backwards, too!
- Warning: This is slightly confusing with

forwardInput and vertical axis

public float horizontalInput;
public float forwardInput;

void Update()
{

horizontalInput = Input.GetAxis("Horizontal");
forwardInput = Input.GetAxis("Vertical");

transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

Step 4: Make vehicle rotate instead of slide
There’s something weird about the vehicle’s movement… it’s slides left to right instead of
turning. Let’s allow the vehicle to turn like a real car!

1. In Update, call transform.Rotate(Vector3.up,
horizontalInput), then test

2. Delete the line of code that translates Right, then
test

3. Add * turnSpeed * Time.deltaTime, then test

- New: transform.Rotate
- Tip: You can always trust the official

Unity scripting API documentation

void Update()
{

horizontalInput = Input.GetAxis("Horizontal");
forwardInput = Input.GetAxis("Vertical");

transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
transform.Rotate(Vector3.up, turnSpeed * horizontalInput * Time.deltaTime);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

© Unity 2021 Create with Code - Unit 1

23

Step 5: Clean your code and hierarchy
We added lots of new stuff in this lesson. Before moving on and to be more professional, we
need to clean our scripts and hierarchy to make them more organized.

1. In the hierarchy, Right-click > Create Empty and
rename it “Obstacles”, then drag all the obstacles
into it

2. Initialize variables with values in PlayerController,
then make all variables private (except for the
player variables)

3. Use // to add comments to each section of code

- New: Empty Object
- Tip: You don’t actually need to type

“private”, it defaults to that
- Tip: Comments are important,

especially for your future self

public private float speed = 20.0f;
public private float turnSpeed = 45.0f;
public private float horizontalInput;
public private float forwardInput;

void Update() {
horizontalInput = Input.GetAxis("Horizontal");
forwardInput = Input.GetAxis("Vertical");
// Moves the car forward based on vertical input
transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
// Rotates the car based on horizontal input
transform.Rotate(Vector3.up, turnSpeed * horizontalInput * Time.deltaTime);

}

Lesson Recap
New
Functionality

● When the player presses the up/down arrows, the vehicle will move forward
and backward

● When the player presses the left/right arrows, the vehicle turns

New Concepts
and Skills

● Empty objects
● Get user input
● Translate vs Rotate

© Unity 2021 Create with Code - Unit 1

24

Challenge 1
Plane Programming

Challenge
Overview:

Use the skills you learned in the driving simulation to fly a plane around
obstacles in the sky. You will have to get the user’s input from the up and down
arrows in order to control the plane’s pitch up and down. You will also have to
make the camera follow alongside the plane so you can keep it in view.

Challenge
Outcome:

- The plane moves forward at a constant rate
- The up/down arrows tilt the nose of the plane up and down
- The camera follows along beside the plane as it flies

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Using the Vector3 class to move and rotate objects along/around an axis
- Using Time.deltaTime in the Update() method to move objects properly
- Moving and rotating objects in scene view to position them the way you want
- Assigning variables in the inspector and initializing them in code
- Implementing Input variables to control the movement/rotation of objects

based on User input

Challenge
Instructions:

- Open your Prototype 1 project
- Download the "Challenge 1 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 1 > Instructions folder, use the

Outcome video as a guide to complete the challenge

© Unity 2021 Create with Code - Unit 1

25

Challenge Task Hint

1 The plane is going
backwards

Make the plane go forward Vector3.back makes an object
move backwards, Vector3.forward
makes it go forwards

2 The plane is going too
fast

Slow the plane down to a
manageable speed

If you multiply a value by
Time.deltaTime, it will change it
from 1x/frame to 1x/second

3 The plane is tilting
automatically

Make the plane tilt only if the
user presses the up/down
arrows

In PlayerControllerX.cs, in Update(),
the verticalInput value is
assigned, but it’s never actually used
in the Rotate() call

4 The camera is in front
of the plane

Reposition it so it’s beside
the plane

For the camera’s position, try X=30,
Y=0, Z=10 and for the camera’s
rotation, try X=0, Y=-90, Z=0

5 The camera is not
following the plane

Make the camera follow the
plane

In FollowPlayerX.cs, neither the plane
nor offset variables are assigned a
value - assign the plane variable in
the camera’s inspector and assign
the offset = new Vector3(30,
0, 10) in the code

Bonus Challenge Task Hint

X The plane’s propeller
does not spin

Create a script that spins the
plane’s propeller

There is a “Propeller” child object of
the plane - you should create a new
“SpinPropellerX.cs” script and make it
rotate every frame around the Z axis.

© Unity 2021 Create with Code - Unit 1

26

Challenge Solution

1 In PlayerControllerX.cs, in Update, change Vector3.back to Vector3.forward

// move the plane forward at a constant rate

transform.Translate(Vector3.back.forward * speed);

2 In PlayerControllerX.cs, in Update, add * Time.deltaTime to the Translate call

// move the plane forward at a constant rate
transform.Translate(Vector3.forward * speed * Time.deltaTime);

3 In PlayerControllerX.cs, include the verticalInput variable to the Rotate method:

// tilt the plane up/down based on up/down arrow keys
transform.Rotate(Vector3.right * rotationSpeed * verticalInput * Time.deltaTime);

4 Change the camera’s position to (30, 0, 10) and its rotation, to (0, -90, 0)

5 To assign the plane variable, select Main Camera
in the hierarchy, then drag the Plane object onto
the “Plane” variable in the inspector

To assign the offset variable, add the value
as a new Vector3 at the top of
FollowPlane.cs:

private Vector3 offset = new Vector3(30,

0, 10);

© Unity 2021 Create with Code - Unit 1

27

Bonus Challenge Solution

X1 Create a new Script called “SpinPropellerX.cs” and attach it to the “Propellor” object (which is
a child object of the Plane):

X2 In RotatePropellerX.cs, add a new propellorSpeed variable and Rotate the propeller on the Z
axis

private float propellorSpeed = 1000;

void Update() {

transform.Rotate(Vector3.forward, propellorSpeed * Time.deltaTime);

}

© Unity 2021 Create with Code - Unit 1

28

Unit 1 Lab
Project Design Document
Steps:
Step 1: Understand what a Personal Project is

Step 2: Review Design Doc examples

Step 3: Complete your Project Concept V1

Step 4: Complete your Project Timeline

Step 5: Complete your MVP sketch

Example of progress by end of lab

Length: 60 minutes

Overview: In this first ever Lab session, you will begin the preliminary work required to
successfully create a personal project in this course. First, you’ll learn what a
personal project is, what the goals for it are, and what the potential
limitations are. Then you will take the time to come up with an idea and
outline it in detail in your Design Document, including a timeline for when you
hope to complete certain features. Finally, you will take some time to draw a
sketch of your project to help you visualize it and share your idea with others.

Project
Outcome:

The Design Document will be filled out, including the concept, the timeline,
and a preliminary sketch of the minimum viable product.

Learning
Objectives:

By the end of this lab, you will be able to:
- Come up with an idea for a project with a scope appropriate to your time

and available resources
- Think through a project’s concept in order to better understand its

requirements
- Plan out a project’s milestones with due dates to better understand the

production cycle and to hold yourself more accountable
- Create a simple sketch / storyboard in order to better communicate your

ideas

© Unity 2021 Create with Code - Unit 1

29

Step 1: Understand what a Personal Project is
Before we get started on our personal projects, we should make sure we understand our
primary goals.

Explain What Personal Projects (PP’s) are:
● Projects they will be working on on their own with less direct instruction
● A chance to create a project they really care about with their own creative choices
● An opportunity to apply and solidify skills they learned in lessons and challenges

Demo The Core Functionality and skills they will learn from each of the 5 Units by showcasing
completed versions of each Prototype:

1. Driving Simulation: player control through user input
2. Feed the Animals: basic gameplay by spawning random objects on an interval

and trying to collect them, avoid them, or fire projectiles at them
3. Run and Jump: sound and effects, and animation (of background or player)
4. Sumo Battle: gameplay mechanics, powerups and/or increasing difficulty
5. Quick Click: user interface with title screen, game over screen, and score display

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Explain Goal / Evaluation of the PP’s are based on:
● Completeness - how much of what you set out to complete did you actually finish
● Uniqueness / Application - how much did you add new design and dev features,

extending and applying your skills in novel and creative ways
NOTE - These two priorities are at odds and it’s up to you to find the balance

Explain You just need a Minimum Viable Product (an MVP) - doesn’t have to be polished
● Definition: a product with just enough features to satisfy early customers, and to

provide feedback for future product development
● This will allow them to focus on the core of the project and not get distracted by

flashy features and graphics that don’t matter as much

Warning There will be a temptation to try and do too much that is completely different from what
anything in the course (e.g. “I want to make “Madden + Facebook + Google!”)

● There’s lots of time to try and do really ambitious crazy projects in the future, but
for now on this first project, try to stick closely to the core functionality you’re
learning

● The only limitation is time - with enough time, they could make anything!

Discuss Make sure students understand what the Personal Project is, allowing them to ask
questions

© Unity 2021 Create with Code - Unit 1

30

Step 2: Review Design Doc examples
Now that we have some idea of what a Personal Project is, let’s look a couple examples
1. Click on the link to open a new Project Design Doc

as either a Google Doc Copy, a Word Document or
PDF

2. Think through how you would fill out a design doc
for other games

- Warning: you will need to be signed
into a Google account to be able to
make a copy of the Google Doc version

- Tip: Search YouTube for “gameplay” of
the classic game you want

- Explanation: Notice that sections
correspond to what you’ll be learning
with each unit/prototype

Step 3: Complete your Project Concept V1
Now that we’ve seen some examples, let’s try to come up with our own project concept.

1. Add your name and date in
the top-right corner

2. Fill in the blanks for your
project concept

3. Share your project concept
with someone else to make
sure it makes sense to them

- Explanation: In the Course Library, you’ve got human
characters, animals, vehicles, foods, sports balls, other
random things, but you can always use “primitives” as
placeholders in a MVP, then go to the Unity Asset store to
get real graphics

- Tip: This is good opportunity to catch yourself if you’re
being too ambitious

- Don’t worry: This is just a best guess right now, if you want
to change your project completely next lab, you could

© Unity 2021 Create with Code - Unit 1

https://docs.google.com/document/d/1FR-GYr2hL67d6MleWTTP-mXfCHVZTM1Mko77MFodxFg/copy
https://connect-prd-cdn.unity.com/20200401/a0ca9f73-ec70-4024-bc42-256d14ada1ce/Project%20Design%20Doc%20[WORD].docx?_ga=2.251071302.1186801097.1620052249-59568313.1601905412
https://connect-prd-cdn.unity.com/20190524/19ad3c2b-506e-46c9-9700-07180536a9d2_Project_Design_Doc__PDF_.pdf?_ga=2.251071302.1186801097.1620052249-59568313.1601905412

31

Step 4: Complete your Project Timeline
Now that we know the basic concept of our project, let’s figure out how we’re going to get it
done.

1. Fill in milestone
descriptions based
on your schedule for
the course, including
self-imposed due
dates

2. Add features that
will not be included
in your MVP to the
“Backlog”

- Warning: This is a MVP, so don’t be afraid to put objects on backlog
that you’ll get to in version 2

- Explanation: In Lab 2 you will be setting up your project, in Lab 3 you
will do basic player movement, in Lab 4 you will add basic gameplay,
and Lab 5 you will add graphics - that would be a good start in filling
this out

- Tip: This will depend heavily on the schedule you’re following for this
course - you should leave a significant amount of time to work on it
at the end when you’ve completed all 5 units

- Don’t worry: It will be hard to do this accurately, since you don’t know
how long things take - this can change

- Don’t worry: You don’t need to use all milestones - can add more or
leave blank rows you are not using

- Tip: These should be worded as “Completed functionality” - as in:
“Frog can move side-to-side based on left/right arrow keys”

© Unity 2021 Create with Code - Unit 1

32

Step 5: Complete your MVP sketch
To help visualize our minimum viable product, it’s always helpful to have a sketch.

1. Look at sketch in the example
2. Using Google Docs, some other online

simple drawing program, or pencil and
paper, draw a sketch of your MVP and
add it to your doc

- Warning: Do not spend forever on this - it’s just a
sketch - use circles, squares, and arrows

- Explanation: This should just be a sketch of your
MVP - what you hope to accomplish by the end
of the course - not the fully fledged product

Lesson Recap
New Progress ● Completed your project concept and production timeline

New Concepts
and Skills

● Personal Projects
● Design Documents
● Project Timelines
● Project Milestones and Backlogs
● Minimum Viable Products

© Unity 2021 Create with Code - Unit 1

33

Quiz Unit 1
QUESTION CHOICES

1 Which Unity window contains a list of all the game
objects currently in your scene?

a. Scene view
b. Project window
c. Hierarchy
d. Inspector

2 True or False:
Visual Studio is not a part of Unity. You could use a
different code editor to edit your C# scripts if you
wanted to.

a. True
b. False

3 What best describes the difference between the below
images, where the car is in the second image is further
along the road?

a. The second car’s X location
value is higher than the first
car’s

b. The second car’s Y location
value is higher than the first
car’s

c. The second car’s Z location
value is higher than the first
car’s

d. The second car’s Transform
value is higher than the first
car’s.

4 In what order do you put the words when you are
declaring a new variable?

a. [data type] [access modifier]
[variable value] [variable name]

b. [access modifier] [data type]
[variable name] [variable value]

c. [data type] [access modifier]
[variable name] [variable value]

d. [variable name] [data type]

public float speed = 20.0f;

© Unity 2021 Create with Code - Unit 1

34
[access modifier] [variable
value]

5 Which of the following variables would be visible in the
Inspector?

a. speed
b. turnSpeed
c. speed & turnSpeed
d. horizontalInput & forwardInputpublic float speed;

float turnSpeed = 45.0f;

private float horizontalInput;

private float forwardInput;

6 What is a possible value for the horizontalInput variable? a. -10
b. 0.52
c. “Right”
d. Vector3.Up

horizontalInput = Input.GetAxis("Horizontal");

7 What is true about the following two lines of code? a. They will both move an object
the same distance

b. They will both move an object
in the same direction

c. They will both move an object
along the same axis

d. They will both rotate an object,
but along different axes

transform.Translate(Vector3.forward);

transform.Translate(1, 0, 0);

8 Which of the following lines of code is using standard
Unity naming conventions?

a. Line A
b. Line B
c. Line C
d. Line D/* a */ Public Float Speed = 40.0f;

/* b */ public float Speed = 40.0f;

/* c */ public float Speed = 40.0f;

/* d */ public float speed = 40.0f;

9 Which comment would best describe the code below? a. // Rotates around the Y axis
based on left/right arrow keys

b. // Rotates around the Z axis
based on up/down arrow keys

c. // Rotates in an upward
direction based on left/right

horizontalInput = Input.GetAxis("Horizontal");

transform.Rotate(Vector3.up, horizontalInput);

© Unity 2021 Create with Code - Unit 1

35
arrow keys

d. // Moves object up/down
based on the the left/right
arrow keys

10 The image below shows the preferences window that
allows you to change which script editing tool (or IDE)
you want to use. Where would you click to choose an
alternative code editing tool?

a. The red box (External Script
Editor)

b. The blue box (Image
application)

c. The green box (Revision
control Diff/Merge)

© Unity 2021 Create with Code - Unit 1

36

Quiz Answer Key
ANSWER EXPLANATION

1 C The Hierarchy window contains a list of every GameObject in the current
Scene. As objects are added and removed in the Scene, they will appear and
disappear from the Hierarchy as well.

2 B True. Visual Studio is just one of many editors you could use to edit your
code, including editors like Atom, Sublime, or even a basic Text Editor.

3 C You can tell which axis the car has moved along using the XYZ directional
gizmo in the top-right, which shows the blue axis pointing forwards down the
road.

4 B Variables are always declared in the order:
[access modifier] - public, private, etc
[data type] - float, int, GameObject, etc
[variable name] - speed, turnSpeed, player, offset, etc
[variable value] - 1.0f, 2, new Vector3(0, 1, 0), etc

5 A “public float speed” would be visible because it has the “public” modifier
applied to it

6 B Input.GetAxis returns a float value between -1 and 1, which means 0.52 is a
possible value

7 A Vector3.forward is the equivalent of (0, 0, 1), which has the same magnitude
as (1, 0, 0), even though they’re in different directions, so they would both
move an object the same distance, but along different axes

8 D “public float speed = 40.0f;” uses the correct naming conventions because all
three of these terms should start with lowercase letters

9 A Vector3.up is the Y axis and it’s using the Horizontal input value, so it would
rotate around the Y axis when the user presses the left/right arrows

10 A You would click on the Red box to change the “External Script Editor” from
Visual Studio to another tool.

© Unity 2021 Create with Code - Unit 1

37

Bonus Features 1 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 1

38

Step 1: Overview
This tutorial outlines four potential bonus features for the Driving Simulation Prototype at varying
levels of difficulty:

● Easy: Obstacle Pyramids
● Medium: Oncoming vehicles
● Hard: Camera switcher
● Expert: Local multiplayer

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 1

39

Step 2: Easy: Obstacle pyramids
Create stacks, piles, or pyramids of obstacles for the vehicle to drive through.
These will be more satisfying for the player to crash into compared with single objects.

Step 3: Medium: Oncoming vehicles
Add a couple of other cars that are automatically driving down the road in the opposite direction,
which the player also has to avoid.
This will make the experience much more challenging, since the player will now be forced to think
quickly, rather than taking as much time as they need.

© Unity 2021 Create with Code - Unit 1

40

Step 5: Hard: Camera switcher
Allow the player to press a key on the keyboard to switch camera views.
Ideally, the same key would toggle between two views, one above and behind the vehicle, and the
other from the perspective of the driver’s seat.

Step 6: Expert: Local multiplayer
Transform this into a “local multiplayer” split-screen game with two cars, where one player’s car is
controlled by WASD and the other is controlled by the arrow keys.
This would add a completely new competitive dimension to the prototype.

© Unity 2021 Create with Code - Unit 1

41

Step 7: Hints and solution walkthrough
Hints:

● Easy: Obstacle pyramids
○ Remember to use a Rigidbody!

● Medium: Oncoming vehicles
○ Try using transform.Translate to move the other vehicles.

● Hard: Camera switcher
○ Add a second camera and then use a key press to enable and disable it.

● Expert: Local multiplayer
○ You will need to edit the Input Manager and the Camera’s Viewport Rect Width

property.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 1

https://connect-prd-cdn.unity.com/20210504/93a938b7-ee56-488f-b0b3-8b956c0a31fd/Unit%201%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.197142511.1186801097.1620052249-59568313.1601905412

42

© Unity 2021 Create with Code - Unit 1

1

Create with Code
Unit 2 Lesson Plans

© Unity 2021 Create with Code - Unit 2

2

2.1 Player Positioning

Steps:
Step 1: Create a new Project for Prototype 2

Step 2: Add the Player, Animals, and Food

Step 3: Get the user’s horizontal input

Step 4: Move the player left-to-right

Step 5: Keep the player inbounds

Step 6: Clean up your code and variables

Example of project by end of lesson

Length: 60 minutes

Overview: You will begin this unit by creating a new project for your second Prototype
and getting basic player movement working. You will first choose which
character you would like, which types of animals you would like to interact
with, and which food you would like to feed those animals. You will give the
player basic side-to-side movement just like you did in Prototype 1, but then
you will use if-then statements to keep the Player in bounds.

Project
Outcome:

The player will be able to move left and right on the screen based on the
user’s left and right key presses, but will not be able to leave the play area on
either side.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Adjust the scale of an object proportionally in order to get it to the size you

want
- More comfortably use the GetInput function in order to use user input to

control an object
- Create an if-then statement in order to implement basic logic in your

project, including the use of greater than (>) and less than (<) operators
- Use comments and automatic formatting in order to make their code more

clean and readable to other programmers

© Unity 2021 Create with Code - Unit 2

3

Step 1: Create a new Project for Prototype 2
The first thing we need to do is create a new project and import the Prototype 2 starter files.
1. Open Unity Hub and create an empty “Prototype 2”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 2 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. From the Project window, open the Prototype 2
scene and delete the SampleScene

4. In the top-right of the Unity Editor, change your
Layout from Default to your custom layout

- Don’t worry: Unit 2 has far more
assets than Unit 1, so the package
might take a while to import.

Step 2: Add the Player, Animals, and Food
Let’s get all of our objects positioned in the scene, including the player, animals, and food.

1. If you want, drag a different material from Course
Library > Materials onto the Ground object

2. Drag 1 Human, 3 Animals, and 1 Food object into
the Hierarchy

3. Rename the human “Player”, then reposition the
animals and food so you can see them

4. Adjust the XYZ scale of the food so you can easily
see it from above

- New Technique: Adjusting Scale
- Warning: Don’t choose people for

anything but the player, they don’t have
walking animations

- Tip: Remember, dragging objects into
the hierarchy puts them at the origin

© Unity 2021 Create with Code - Unit 2

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip?_ga=2.29238268.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

© Unity 2021 Create with Code - Unit 2

5

Step 3: Get the user’s horizontal input
If we want to move the Player left-to-right, we need a variable tracking the user’s input.

1. In your Assets folder, create a “Scripts” folder, and
a “PlayerController” script inside

2. Attach the script to the Player and open it
3. At the top of PlayerController.cs, declare a new

public float horizontalInput
4. In Update(), set horizontalInput =

Input.GetAxis(“Horizontal”), then test to make sure
it works in the inspector

- Warning: Make sure to create your
Scripts folder inside of the assets
folder

- Don’t worry: We’re going to get VERY
familiar with this process

- Warning: If you misspell the script
name, just delete it and try again.

public float horizontalInput;

void Update()
{
horizontalInput = Input.GetAxis("Horizontal");

}

Step 4: Move the player left-to-right
We have to actually use the horizontal input to translate the Player left and right.

1. Declare a new public float speed = 10.0f;
2. In Update(), Translate the player side-to-side based

on horizontalInput and speed

- Tip: You can look at your old scripts for
code reference

public float horizontalInput;
public float speed = 10.0f;

void Update()
{
horizontalInput = Input.GetAxis("Horizontal");
transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);

}

© Unity 2021 Create with Code - Unit 2

6

Step 5: Keep the player inbounds
We have to prevent the player from going off the side of the screen with an if-then statement.

1. In Update(), write an if-statement checking if the
player’s left X position is less than a certain value

2. In the if-statement, set the player’s position to its
current position, but with a fixed X location

- Tip: Move the player in scene view to
determine the x positions of the left
and right bounds

- New Concept: If-then statements
- New Concept: Greater than > and Less

Than < operators

void Update() {
if (transform.position.x < -10) {
transform.position = new Vector3(-10, transform.position.y, transform.position.z);

}
}

Step 6: Clean up your code and variables
We need to make this work on the right side, too, then clean up our code.

1. Repeat this process for the right side of the
screen

2. Declare new xRange variable, then replace the
hardcoded values with them

3. Add comments to your code

- Warning: Whenever you see hardcoded
values in the body of your code, try to
replace it with a variable

- Warning: Watch your greater than /
less than signs!

public float xRange = 10;

void Update()
{
// Keep the player in bounds
if (transform.position.x < -10 -xRange)
{
transform.position = new Vector3(-10 -xRange, transform.position.y, transform.position.z);

}
if (transform.position.x > xRange)
{
transform.position = new Vector3(xRange, transform.position.y, transform.position.z);

}
}

© Unity 2021 Create with Code - Unit 2

7

Lesson Recap
New
Functionality

● The player can move left and right based on the user’s left and right key
presses

● The player will not be able to leave the play area on either side

New Concepts
and Skills

● Adjust object scale
● If-statements
● Greater/Less than operators

Next Lesson ● We’ll learn how to create and throw endless amounts of food to feed our
animals!

© Unity 2021 Create with Code - Unit 2

8

2.2 Food Flight

Steps:
Step 1: Make the projectile fly forwards

Step 2: Make the projectile into a prefab

Step 3: Test for spacebar press

Step 4: Launch projectile on spacebar press

Step 5: Make animals into prefabs

Step 6: Destroy projectiles offscreen

Step 7: Destroy animals offscreen

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson, you will allow the player to launch the projectile through the
scene. First you will write a new script to send the projectile forwards. Next
you will store the projectile along with all of its scripts and properties using
an important new concept in Unity called Prefabs. The player will be able to
launch the projectile prefab with a tap of the spacebar. Finally, you will add
boundaries to the scene, removing any objects that leave the screen.

Project
Outcome:

The player will be able to press the Spacebar and launch a projectile prefab
into the scene, which destroys itself when it leaves the game’s boundaries.
The animals will also be removed from the scene when they leave the game
boundaries.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Transform a game object into a prefab that can be used as a template
- Instantiate Prefabs to spawn them into the scene
- Override Prefabs to update and save their characteristics
- Get user input with GetKey and KeyCode to test for specific keyboard

presses
- Apply components to multiple objects at once to work as efficiently as

possible

© Unity 2021 Create with Code - Unit 2

9

Step 1: Make the projectile fly forwards
The first thing we must do is give the projectile some forward movement so it can zip across
the scene when it’s launched by the player.
1. Create a new “MoveForward” script, attach it to the

food object, then open it
2. Declare a new public float speed variable;
3. In Update(), add

transform.Translate(Vector3.forward *
Time.deltaTime * speed);, then save

4. In the Inspector, set the projectile’s speed variable,
then test

- Don’t worry: You should all be super
familiar with this method now… getting
easier, right?

public float speed = 40;

void Update() {
transform.Translate(Vector3.forward * Time.deltaTime * speed);

}

Step 2: Make the projectile into a prefab
Now that our projectile has the behavior we want, we need to make it into a prefab it so it can
be reused anywhere and anytime, with all its behaviors included.
1. Create a new “Prefabs” folder, drag your food into

it, and choose Original Prefab
2. In PlayerController.cs, declare a new public

GameObject projectilePrefab; variable
3. Select the Player in the hierarchy, then drag the

object from your Prefabs folder onto the new
Projectile Prefab box in the inspector

4. Try dragging the projectile into the scene at
runtime to make sure they fly

- New Concept: Prefabs
- New Concept: Original vs Variant

Prefabs
- Tip: Notice that this your projectile

already has a move script if you drag it
in

© Unity 2021 Create with Code - Unit 2

10

Step 3: Test for spacebar press
Now that we have a projectile prefab assigned to PlayerController.cs, the player needs a way to
launch it with the space bar.
1. In PlayerController.cs, in Update(), add an

if-statement checking for a spacebar press:
if (Input.GetKeyDown(KeyCode.Space)) {

2. Inside the if-statement, add a comment saying
that you should // Launch a projectile from the
player

- Tip: Google a solution. Something like
“How to detect key press in Unity”

- New Functions: Input.GetKeyDown,
GetKeyUp, GetKey

- New Function: KeyCode

void Update()
{

if (Input.GetKeyDown(KeyCode.Space))
{

// Launch a projectile from the player
}

}

Step 4: Launch projectile on spacebar press
We’ve created the code that tests if the player presses spacebar, but now we actually need
spawn a projectile when that happens
1. Inside the if-statement, use the Instantiate

method to spawn a projectile at the player’s
location with the prefab’s rotation

- New Concept: Instantiation

if (Input.GetKeyDown(KeyCode.Space))
{
// Launch a projectile from the player
Instantiate(projectilePrefab, transform.position, projectilePrefab.transform.rotation);

}

© Unity 2021 Create with Code - Unit 2

11

Step 5: Make animals into prefabs
The projectile is now a prefab, but what about the animals? They need to be prefabs too, so they
can be instantiated during the game.
1. Rotate all animals on the Y axis by 180 degrees to

face down
2. Select all three animals in the hierarchy and Add

Component > Move Forward
3. Edit their speed values and test to see how it

looks
4. Drag all three animals into the Prefabs folder,

choosing “Original Prefab”
5. Test by dragging prefabs into scene view during

gameplay

- Tip: You can change all animals at
once by selecting all them in the
hierarchy while holding Cmd/Ctrl

- Tip: Adding a Component from
inspector is same as dragging it on

- Warning: Remember, anything you
change while the game is playing will
be reverted when you stop it

Step 6: Destroy projectiles offscreen
Whenever we spawn a projectile, it drifts past the play area into eternity. In order to improve
game performance, we need to destroy them when they go out of bounds.
1. Create “DestroyOutOfBounds” script and apply it

to the projectile
2. Add a new private float topBound variable and

initialize it = 30;
3. Write code to destroy if out of top bounds if

(transform.position.z > topBound) {
Destroy(gameObject); }

4. In the Inspector Overrides drop-down, click Apply
all to apply it to prefab

- Warning: Too many objects in the
hierarchy will slow the game

- Tip: Google “How to destroy
gameobject in Unity”

- New Function: Destroy
- New Technique: Override prefab

private float topBound = 30;

void Update() {
if (transform.position.z > topBound) {
Destroy(gameObject); }}

© Unity 2021 Create with Code - Unit 2

12

Step 7: Destroy animals offscreen
If we destroy projectiles that go out of bounds, we should probably do the same for animals. We
don’t want critters getting lost in the endless abyss of Unity Editor...
1. Create a new private float lowerBound variable

and initialize it = -10;
2. Create else-if statement to check if objects are

beneath lowerBound:
else if (transform.position.z > topBound)

3. Apply the script to all of the animals, then Override
the prefabs

- New Function: Else-if statement
- Warning: Don’t make topBound too

tight or you’ll destroy the animals
before they before they can spawn

private float topBound = 30;
private float lowerBound = -10;

void Update() {
if (transform.position.z > topBound)
{

Destroy(gameObject);
} else if (transform.position.z < lowerBound) {

Destroy(gameObject);
}

}

Lesson Recap
New
Functionality

● The player can press the Spacebar to launch a projectile prefab,
● Projectile and Animals are removed from the scene if they leave the screen

New Concepts
and Skills

● Create Prefabs
● Override Prefabs
● Test for Key presses
● Instantiate objects
● Destroy objects
● Else-if statements

Next Lesson ● Instead of dropping all these animal prefabs onto the scene, we’ll create a
herd of animals roaming the plain!

© Unity 2021 Create with Code - Unit 2

13

2.3 Random Animal Stampede

Steps:
Step 1: Create a spawn manager

Step 2: Spawn an animal if S is pressed

Step 3: Spawn random animals from array

Step 4: Randomize the spawn location

Step 5: Change the perspective of the camera

Example of project by end of lesson

Length: 50 minutes

Overview: Our animal prefabs walk across the screen and get destroyed out of bounds,
but they don’t actually appear in the game unless we drag them in! In this
lesson we will allow the animals to spawn on their own, in a random location
at the top of the screen. In order to do so, we will create a new object and a
new script to manage the entire spawning process.

Project
Outcome:

When the user presses the S key, a randomly selected animal will spawn at a
random position at the top of the screen, walking towards the player.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create an empty object with a script attached
- Use arrays to create an accessible list of objects or values
- Use integer variables to determine an array index
- Randomly generate values with Random.Range in order to randomize

objects in arrays and spawn positions
- Change the camera’s perspective to better suit your game

© Unity 2021 Create with Code - Unit 2

14

Step 1: Create a spawn manager
If we are going to be doing all of this complex spawning of objects, we should have a dedicated
script to manage the process, as well as an object to attach it to.
1. In the Hierarchy, create an Empty object called

“SpawnManager”
2. Create a new script called “SpawnManager”, attach it to

the Spawn Manager, and open it
3. Declare new public GameObject[] animalPrefabs;
4. In the Inspector, change the Array size to match your

animal count, then assign your animals by dragging
them from the Project window into the empty slots

Note: Make sure you drag them from the Project
window; not the Hierarchy! If you're going to spawn
objects, you need to make sure you're using Prefabs,
which are stored in the Project window.

- Tip: Empty objects can be
used to store objects or used
to store scripts

- Warning: You can use
spaces when naming your
empty object, but make sure
your script name uses
PascalCase!

- New Concept: Arrays

© Unity 2021 Create with Code - Unit 2

15

Step 2: Spawn an animal if S is pressed
We’ve created an array and assigned our animals to it, but that doesn’t do much good until we
have a way to spawn them during the game. Let’s create a temporary solution for choosing and
spawning the animals.
1. In Update(), write an if-then statement to

instantiate a new animal prefab at the top of the
screen if S is pressed

2. Declare a new public int animalIndex and
incorporate it in the Instantiate call, then test
editing the value in the Inspector

- New Concept: Array Indexes
- Tip: Array indexes start at 0 instead of

1. An array of 3 animals would look like
[0, 1, 2]

- New Concept: Integer Variables
- Don’t worry: We’ll declare a new

variable for the Vector3 and index later

public GameObject[] animalPrefabs;
public int animalIndex;

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20),
animalPrefabs[animalIndex].transform.rotation);

}
}

Step 3: Spawn random animals from array
We can spawn animals by pressing S, but doing so only spawns an animal at the array index we
specify. We need to randomize the selection so that S can spawn a random animal based on
the index, without our specification.

1. In the if-statement checking if S is pressed,
generate a random int animalIndex between 0 and
the length of the array

2. Remove the global animalIndex variable, since it is
only needed locally in the if-statement

- Tip: Google “how to generate a random
integer in Unity”

- New Function: Random.Range
- New Function: .Length
- New Concept: Global vs Local

variables

public GameObject[] animalPrefabs;
public int animalIndex;

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

int animalIndex = Random.Range(0, animalPrefabs.Length);
Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20),

animalPrefabs[animalIndex].transform.rotation); }}

© Unity 2021 Create with Code - Unit 2

16

Step 4: Randomize the spawn location
We can press S to spawn random animals from animalIndex, but they all pop up in the same
place! We need to randomize their spawn position, so they don’t march down the screen in a
straight line.

1. Replace the X value for the Vector3 with
Random.Range(-20, 20), then test

2. Within the if-statement, make a new local Vector3
spawnPos variable

3. At the top of the class, create private float
variables for spawnRangeX and spawnPosZ

- Tip: Random.Range for floats is
inclusive of all numbers in the range,
while Random.Range for integers is
exclusive!

- Tip: Keep using variables to clean your
code and make it more readable

private float spawnRangeX = 20;
private float spawnPosZ = 20;

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

// Randomly generate animal index and spawn position
Vector3 spawnPos = new Vector3(Random.Range(-spawnRangeX, spawnRangeX),
0, spawnPosZ);
int animalIndex = Random.Range(0, animalPrefabs.Length);
Instantiate(animalPrefabs[animalIndex], spawnPos,
animalPrefabs[animalIndex].transform.rotation); }}

© Unity 2021 Create with Code - Unit 2

17

Step 5: Change the perspective of the camera
Our Spawn Manager is coming along nicely, so let’s take a break and mess with the
camera.Changing the camera’s perspective might offer a more appropriate view for this
top-down game.

1. Toggle between Perspective and Isometric view in
Scene view to appreciate the difference

2. Select the camera and change the Projection from
“Perspective” to “Orthographic”

- New: Orthographic vs Perspective
Camera Projection

- Tip: Test the game in both views to
appreciate the difference

Lesson Recap
New
Functionality

● The player can press the S to spawn an animal
● Animal selection and spawn location are randomized
● Camera projection (perspective/orthographic) selected

New Concepts
and Skills

● Spawn Manager
● Arrays
● Keycodes
● Random generation
● Local vs Global variables
● Perspective vs Isometric projections

Next Lesson ● Using collisions to feed our animals!

© Unity 2021 Create with Code - Unit 2

18

2.4 Collision Decisions

Steps:
Step 1: Make a new method to spawn animals

Step 2: Spawn the animals at timed intervals

Step 3: Add collider and trigger components

Step 4: Destroy objects on collision

Step 5: Trigger a “Game Over” message

Example of project by end of lesson

Length: 50 minutes

Overview: Our game is coming along nicely, but there are are some critical things we
must add before it’s finished. First off, instead of pressing S to spawn the
animals, we will spawn them on a timer so that they appear every few
seconds. Next we will add colliders to all of our prefabs and make it so
launching a projectile into an animal will destroy it. Finally, we will display a
“Game Over” message if any animals make it past the player.

Project
Outcome:

The animals will spawn on a timed interval and walk down the screen,
triggering a “Game Over” message if they make it past the player. If the
player hits them with a projectile to feed them, they will be destroyed.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Repeat functions on a timer with InvokeRepeating
- Write custom functions to make your code more readable
- Edit Box Colliders to fit your objects properly
- Detect collisions and destroy objects that collide with each other
- Display messages in the console with Debug Log

© Unity 2021 Create with Code - Unit 2

https://docs.google.com/document/d/1hnzwRKIMzMDAgqN6B6qXfuQEUBHHOITFUuI8io1-SDY/edit#heading=h.jpvf7062snkj

19

Step 1: Make a new method to spawn animals
Our Spawn Manager is looking good, but we’re still pressing S to make it work! If we want the
game to spawn animals automatically, we need to write our very first custom function.
1. In SpawnManager.cs, create a new void

SpawnRandomAnimal() {} function beneath
Update()

2. Cut and paste the code from the if-then statement
to the new function

3. Call SpawnRandomAnimal(); if S is pressed

- New Concept: Custom Void Functions
- New Concept: Compartmentalization /

Abstraction

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

SpawnRandomAnimal();
int animalIndex … (Cut and Pasted Below) }}

void SpawnRandomAnimal() {
int animalIndex = Random.Range(0, animalPrefabs.Length);
Vector3 spawnpos = new Vector3(Random.Range(-xSpawnRange,

xSpawnRange), 0, zSpawnPos);
Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20) spawnpos,

animalPrefabs[animalIndex].transform.rotation);
}

Step 2: Spawn the animals at timed intervals
We’ve stored the spawn code in a custom function, but we’re still pressing S! We need to spawn
the animals on a timer, so they randomly appear every few seconds.

1. In Start(), use InvokeRepeating to spawn the
animals based on an interval, then test.

2. Remove the if-then statement that tests for S
being pressed

3. Declare new private startDelay and spawnInterval
variables then playtest and tweak variable values

- Tip: Google “Repeating function in
Unity”

- New Function: InvokeRepeating

private float startDelay = 2;
private float spawnInterval = 1.5f;

void Start() {
InvokeRepeating("SpawnRandomAnimal", startDelay, spawnInterval); }

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

SpawnRandomAnimal(); } }

© Unity 2021 Create with Code - Unit 2

20

Step 3: Add collider and trigger components
Animals spawn perfectly and the player can fire projectiles at them, but nothing happens when
the two collide! If we want the projectiles and animals to be destroyed on collision, we need to
give them some familiar components - “colliders.”

1. Double-click on one of the animal prefabs, then
Add Component > Box Collider

2. Click Edit Collider, then drag the collider handles
to encompass the object

3. Check the “Is Trigger” checkbox
4. Repeat this process for each of the animals and

the projectile
5. Add a RigidBody component to the projectile and

uncheck “use gravity”

- New Component: Box Colliders
- Warning: Avoid Box Collider 2D
- Tip: Use isometric view and the

gizmos to cycle around and edit the
collider with a clear perspective

- Tip: For the Trigger to work, at least
one of the objects needs a rigidbody
component

Step 4: Destroy objects on collision
Now that the animals and the projectile have Box Colliders with triggers, we need to code a new
script in order to destroy them on impact.

1. Create a new DetectCollisions.cs script, add it to
each animal prefab, then open it

2. Before the final } add OnTriggerEnter function
using autocomplete

3. In OnTriggerEnter, put Destroy(gameObject);, then
test

4. In OnTriggerEnter, put Destroy(other.gameObject);

- New Concept: Overriding Functions
- New Function: OnTriggerEnter
- Tip: The “other” in OnTriggerEnter

refers to the collider of the other object
- Tip: Use VS’s Auto-Complete feature

for OnTriggerEnter and any/all override
functions

void OnTriggerEnter(Collider other) {
Destroy(gameObject);
Destroy(other.gameObject); }

© Unity 2021 Create with Code - Unit 2

21

Step 5: Trigger a “Game Over” message
The player can defend their field against animals for as long as they wish, but we should let
them know when they’ve lost with a “Game Over” message if any animals get past the player.

1. In DestroyOutOfBounds.cs, in the else-if condition
that checks if the animals reach the bottom of the
screen, add a Game Over messsage:
Debug.Log(“Game Over!”)

2. Clean up your code with comments
3. If using Visual Studio, Click Edit > Advanced >

Format document to fix any indentation issues
(On a Mac, click Edit > Format > Format Document)

- New Functions: Debug.Log,
LogWarning, LogError

- Tip: Tweak some values to adjust the
difficulty of your game. It might too
easy!

void Update() {
if (transform.position.z > topBound)
{

Destroy(gameObject);
} else if (transform.position.z < lowerBound)
{

Debug.Log("Game Over!");
Destroy(gameObject);

}
}

Lesson Recap
New
Functionality

● Animals spawn on a timed interval and walk down the screen
● When animals get past the player, it triggers a “Game Over” message
● If a projectile collides with an animal, both objects are removed

New Concepts
and Skills

● Create custom methods/functions
● InvokeRepeating() to repeat code
● Colliders and Triggers
● Override functions
● Log Debug messages to console

© Unity 2021 Create with Code - Unit 2

22

Challenge 2
Play Fetch

Challenge
Overview:

Use your array and random number generation skills to program this challenge
where balls are randomly falling from the sky and you have to send your dog
out to catch them before they hit the ground. To complete this challenge, you
will have to make sure your variables are assigned properly, your if-statements
are programmed correctly, your collisions are being detected perfectly, and
that objects are being generated randomly.

Challenge
Outcome:

- A random ball (of 3) is generated at a random x position above the screen
- When the user presses spacebar, a dog is spawned and runs to catch the

ball
- If the dog collides with the ball, the ball is destroyed
- If the ball hits the ground, a “Game Over” debug message is displayed
- The dogs and balls are removed from the scene when they leave the screen

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Assigning variables and arrays in the inspector
- Editing colliders to the appropriate size
- Testing xyz positions with greater/less than operators in if-else statements
- Randomly generating values and selecting objects from arrays

Challenge
Instructions:

- Open your Prototype 2 project
- Download the "Challenge 2 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 2 > Instructions folder, use the

"Challenge 2 - Instructions" and “Outcome” video as a guide to complete the
challenge

© Unity 2021 Create with Code - Unit 2

23

Challenge Task Hint

1 Dogs are spawning at
the top of the screen

Make the balls spawn from
the top of the screen

Click on the Spawn Manager object
and look at the “Ball Prefabs” array

2 The player is spawning
green balls instead of
dogs

Make the player spawn dogs Click on the Player object and look at
the “Dog Prefab” variable

3 The balls are
destroyed if anywhere
near the dog

The balls should only be
destroyed when coming into
direct contact with a dog

Check out the box collider on the dog
prefab

4 Nothing is being
destroyed off screen

Balls should be destroyed
when they leave the bottom
of the screen and dogs
should be destroyed when
they leave the left side of the
screen

In the DestroyOutOfBounds script,
double-check the lowerLimit and
leftLimit variables, the greater than vs
less than signs, and which position
(x,y,z) is being tested

5 Only one type of ball is
being spawned

Ball 1, 2, and 3 should be
spawned randomly

In the SpawnRandomBall() method,
you should declare a new random int
index variable, then incorporate that
variable into the Instantiate call

Bonus Challenge Task Hint

X The spawn interval is
always the same

Make the spawn interval a
random value between 3
seconds and 5 seconds

Set the spawnInterval value to a new
random number between 3 and 5
seconds in the SpawnRandomBall
method

Y The player can “spam”
the spacebar key

Only allow the player to
spawn a new dog after a
certain amount of time has
passed

Search for Time.time in the Unity
Scripting API and look at the
example. And don’t worry if you can’t
figure it out - this is a very difficult
challenge.

© Unity 2021 Create with Code - Unit 2

24

Challenge Solution

1 Select the Spawn Manager object and expand the “Ball Prefabs” array, then drag the Ball 1, 2, 3
prefabs from Assets > Challenge 2 > Prefabs onto Element 0, 1, 2

2 Select the Player object and drag the Dog prefab from Assets > Challenge 2 > Prefabs onto the
“Dog Prefab” variable

3 Double-click on the Dog prefab, then in the Box Collider component, click Edit Collider, and
reduce the collider to be the same size as the dog

4 In DestroyOutOfBoundsX.cs, make the leftLimit a negative value, change the greater than to a
less than when testing the x position, and test the y value instead of the z for the bottom limit

private float leftLimit = -30;

private float bottomLimit = -5;

void Update() {

if (transform.position.x > < leftLimit) {

Destroy(gameObject);

} else if (transform.position.z y < bottomLimit) {

Destroy(gameObject);

}

}

© Unity 2021 Create with Code - Unit 2

25

5 In the SpawnRandomBall() method, declare a new random int index variable between 0 and the
length of the Array, then incorporate that index variable into the the Instantiate call

void SpawnRandomBall ()
{
// Generate random ball index and random spawn position
int index = Random.Range(0, ballPrefabs.Length);
Vector3 spawnPos = new Vector3(Random.Range(spawnXLeft, spawnXRight), spawnPosY, 0);

// instantiate ball at random spawn location
Instantiate(ballPrefabs[0 index], spawnPos, ballPrefabs[0 index].transform.rotation);

}

© Unity 2021 Create with Code - Unit 2

26

Bonus Challenge Solution

X1 In SpawnManagerX, the “InvokeRepeating” method will not work to accomplish this, since it is
only capable of calling a single, unchanging method at a pre-set spawnInterval. Instead, we
could use the simpler “Invoke” method (which does not specify a spawnInterval), and then in
the in SpawnRandomBall() method, randomly reset startDelay using Random.Range() and
re-call the SpawnRandomBall() method again from within the method itself.

private float spawnInterval = 4.0f;

void Start ()

{

InvokeRepeating("SpawnRandomBall", startDelay, spawnInterval);

}

void SpawnRandomBall ()

{

startDelay = Random.Range(3, 5);

...

Invoke("SpawnRandomBall", startDelay);

}

Y1 In PlayerControllerX.cs, declare and initialize new fireRate and nextFire variables. Your
“fireRate” will represent the time the player has to wait in seconds, and the nextFire variable
will indicate the time (in seconds since the game started) at which the player will be able to fire
again (starting at 0.0)

public GameObject dogPrefab;

private float fireRate = 1; // time the player has to wait to fire again

private float nextFire = 0; // time since start after which player can fire again

Y2 In the if-statement checking if the player pressed spacebar, add a new condition to check that
Time.time (the time in seconds since the game started) is greater than nextFire (which
represents the time after which the player is allowed to fire. If so, nextFire should be reset to
the current time plus the fireRate.

// On spacebar press, if enough time has elapsed since last fire, send dog

if (Input.GetKeyDown(KeyCode.Space) && Time.time > nextFire)

{

nextFire = Time.time + fireRate; // reset nextFire to current time + fireRate

Instantiate(dogPrefab, transform.position, dogPrefab.transform.rotation);

}

© Unity 2021 Create with Code - Unit 2

27

Unit 2 Lab
New Project with Primitives
Steps:
Step 1: Create a new Unity Project

Step 2: Create a background plane

Step 3: Create primitive Player and material

Step 4: Position camera based on project type

Step 5: Enemies, obstacles, and projectiles

Step 6: Export a Unity Package backup file

Example of progress by end of lab

Length: 60 minutes

Overview: You will create and set up the project that will soon transform into your very
own Personal Project. For now, you will use “primitive” shapes (such as
spheres, cubes, and planes) as placeholders for your objects so that you can
add functionality as efficiently as possible without getting bogged down by
graphics. To make it clear which object is which, you will also give each
object a unique colored material.

Project
Outcome:

All key objects are in the scene as primitive objects with the camera
positioned properly for your project type.

Learning
Objectives:

By the end of this lab, you will be able to:
- Create a simple plane as a background for your project
- Position the camera, background, and player appropriately depending on

the type of project you are creating
- Create primitive shapes to serve as placeholders for your GameObjects
- Create new colored materials and apply them to distinguish GameObjects

© Unity 2021 Create with Code - Unit 2

28

Step 1: Create a new Unity Project
Just like we did with the Prototype, the first thing we need to do is create a new blank project
1. Open Unity Hub and create an empty project

named “Personal Project” in your course directory
on the correct Unity version
If you forget how to do this, refer to Lesson 1.1,
step 1.

2. After Unity opens, select your custom Layout
3. In the Project window, Assets > Scenes, rename

“SampleScene” to “My Game”

- Tip: If there are multiple people with
the same name using the computer,
might want to add last initial

- Don’t worry: There will just be a Main
camera and directional light in there

Step 2: Create a background plane
To orient yourself in the scene and not feel like you’re floating around in mid-air, it’s always good
to start by adding a background / ground object
1. In the Hierarchy, Right-click > 3D Object > Plane to add a

plane to your scene
2. In the Plane’s Inspector, in the top-right of the Transform

component, click on the three dots icon > Reset
Note: the three dots will appear as a gear icon in older
versions of Unity.

3. Increase the XYZ scale of the plane to (5, 1, 5)
4. Adjust your position in Scene view so you have a good

view of the Plane

- Explanation: Working with
primitives - these are simple
objects that allow you to work
faster

© Unity 2021 Create with Code - Unit 2

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15

29

Step 3: Create primitive Player and material
Now that we have the empty plane object set up, we can add the star of the show: the player
object

1. In the Hierarchy, Right-click > 3D Object > Sphere, then
rename it “Player”

2. In Assets, Right-click > Create > Folder named
“Materials”

3. Inside “Materials”, Right-click > Create > Material and
rename it “Blue”

4. In Blue’s Inspector, click on the Albedo color box and
change it to a blue

5. Drag the material from your Assets onto the Player
object

- Tip: Using primitives doesn’t let
graphics distract you and get in
the way of core features,

- Explanation: Albedo is a reference
to astronomical light reflection
properties - but it’s basically just
the material’s color

- Warning: Stick with blue right now
so it’s easy to follow - you’ll be
replacing it later

Step 4: Position camera based on project type
Now that we have the player in there, we need the best view of it, depending on our type of
project

1. For a top-down game, position the camera at (0, 10, 0)
directly over the player and rotate it 90 degrees on the X
axis

2. For a side-view game, rotate the Plane by -90 degrees on
the X axis

3. For a third-person view game, move the camera up on the
Y and Z axes and increase its rotation on the X axis

- Tip: Side view looks like top
view, but it’ll make a big diff
when you apply gravity

- Don’t worry: You might not
know exact view yet - just go
with what’s in your design
doc

Top-down view Side-view Isometric view

© Unity 2021 Create with Code - Unit 2

30

Step 5: Enemies, obstacles, and projectiles
Now that we know how to make primitives, let’s go ahead and make one for each object in our
project

1. In the Hierarchy, create new Cubes, Spheres, and
Capsules for all other main objects, renaming
them, repositioning them, and scaling them

2. In your Materials folder, create new materials for as
many colors as you have unique objects, editing
their color to match their name, then apply those
materials to your objects

3. Position all of your objects in locations relative to
each other that make sense

- Tip: If you plan on having variants of
certain objects (e.g. multiple animals),
create dark/light shades of the same
color

- Tip: Good to make enemies red - easy
if everyone uses the same
conventions

Step 6: Export a Unity Package backup file
Since we’re going to be putting our hearts and souls into this project, it’s always good to make
backups

1. Save your Scene
2. In the Project window, Right-click on the

“Assets” folder > Export Package, then click
Export

3. Create a new “Backups” folder in your Personal
Project folder, then save it with your name and
the version number (e.g.
Carl_V0.1.unitypackage”)

- Explanation: The “include dependencies”
checkbox will include any files that are
tied to / used by anything else we’re
exporting

- Tip: This is the same file type that you
imported at the start of Prototype 1

© Unity 2021 Create with Code - Unit 2

31

Lesson Recap
New Progress ● New project for your Personal Project

● Camera positioned and rotated based on project type
● All key objects in scene with unique materials

New Concepts
and Skills

● Primitives
● Create new materials
● Export Unity packages

© Unity 2021 Create with Code - Unit 2

32

Quiz Unit 2
QUESTION CHOICES

1 If it says, “Hello there!” in the console, what was the
code used to create that message?

a. Debug(“Hello there!”);
b. Debug.Log("Hello there!");
c. Debug.Console(“Hello there!”);
d. Debug.Log(Hello there!);

2 If you want to destroy an object when its health reaches
0, what code would be best in the blank below?

a. health > 0
b. health.0
c. health < 1
d. health < 0private int health = 0;

void Update() {

if (__________) {

Destroy(gameObject);

}

}

3 The code below creates an error that says, “error
CS1503: Argument 1: cannot convert from
'UnityEngine.GameObject[]' to 'UnityEngine.Object'”.
What could you do to remove the errors?

a. On line 1, change
“GameObject[]” to
“GameObject”

b. On line 1, change
“enemyPrefabs” to
“enemyPrefabs[0]”

c. On line 3, change “Start()” to
“Update()”

d. On line 5, change
“enemyPrefabs” to
“enemyPrefabs[0]”

e. Either A or D
f. Both A and D together
g. Both B and C together

1. public GameObject[] enemyPrefabs;

2.

3. void Start()

4. {

5. Instantiate(enemyPrefabs);

6. }

© Unity 2021 Create with Code - Unit 2

33

4 Which comment best describes the following code? a. // If player collides with
another object, destroy player

b. // If enemy collides with
another object, destroy the
object

c. // If player collides with a
trigger, destroy trigger

d. // If player collides with
another object, destroy the
object

public class PlayerController : MonoBehaviour

{

// Comment

private void OnTriggerEnter(Collider other) {

Destroy(other.gameObject);

}

}

5 If you want to move the character up continuously as
the player presses the up arrow, what code would be
best in the two blanks below:

a. GetKey(KeyCode.UpArrow)
b. GetKeyDown(UpArrow)
c. GetKeyUp(KeyCode.Up)
d. GetKeyHeld(Vector3.Up)

if (Input.__________(__________))

{

transform.Translate(Vector3.up);

}

6 Read the documentation from the Unity Scripting API
and the code below. Which of the following are possible
values for the randomFloat and randomInt variables?

a. randomFloat = 100.0f;
randomInt = 0;

b. randomFloat = 100.0f;
randomInt = 100;

c. randomFloat = 50.5f;
randomInt = 100;

d. randomFloat = 0.0f;
randomInt = 50.5;

© Unity 2021 Create with Code - Unit 2

34

float randomFloat = Random.Range(0, 100);

int randomInt = Random.Range(0, 100);

7 You are trying to randomly spawn objects from an array.
However, when your game is running, you see in the
console that there was an “error at
Assets/Scripts/SpawnManager.cs:5.
IndexOutOfRangeException: Index was outside the
bounds of the array.” Which line of code should you edit
in order to resolve this problem and still retain the
random object functionality?

a. Line 2
b. Line 3
c. Line 4
d. Line 5

1. public GameObject[] randomObjects;

2.

3. void SpawnRandomObject() {

4. int objectIndex = Random.Range(0, 3);

5. Instantiate(randomObjects[objectIndex]);

6. }

8 If you have made changes to a prefab in the scene and
you want to apply those changes to all prefabs, what
should you click?

a. The “Create” drop-down at the
top of the Hierarchy

b. The “Open” button at the top of
the Inspector

c. The “Overrides” drop-down at
the top of the Inspector

d. The “Add Component” button
at the bottom of the Inspector

9 Read the documentation from the Unity Scripting API
below. Which of the following is a correct use of the
InvokeRepeating method?

a. InvokeRepeating(“Spawn, 0.5f,
1.0f”);

b. InvokeRepeating(“Spawn”, 0.5f,
1.0f);

c. InvokeRepeating(“Spawn",
gameObject, 1.0f);

d. InvokeRepeating(0.5f, 1.0f,
“Spawn”);

© Unity 2021 Create with Code - Unit 2

35

10 You’re trying to create some logic that will tell the user to
speed up if they’re going too slow or to slow down if
they’re going too fast. How should you arrange the lines
of code below to accomplish that?

a. 4, 6, 1, 2, 5, 9, 7, 8, 3

void Update()
{

if (speed < 10)
{Debug.Log(speedUp); }

else if (speed > 60) {
Debug.Log(slowDown); }
}

private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";

b. 6, 1, 2, 5, 7, 8, 3, 4, 9

if (speed < 10) {
Debug.Log(speedUp); }
else if (speed > 60) {
Debug.Log(slowDown); }
private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";
void Update() {
}

c. 7, 8, 3, 4, 6, 5, 2, 1, 9

private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";
void Update() {
if (speed < 10) {
Debug.Log(slowDown); }
else if (speed > 60) {
Debug.Log(speedUp); }
}

1. Debug.Log(speedUp); }

2. else if (speed > 60) {

3. private string speedUp = "Speed up!";

4. void Update() {

5. Debug.Log(slowDown); }

6. if (speed < 10) {

7. private float speed;

8. private string slowDown = "Slow down!";

9. }

© Unity 2021 Create with Code - Unit 2

36
d. 7, 8, 3, 4, 6, 1, 2, 5, 9

private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";
void Update() {
if (speed < 10) {
Debug.Log(speedUp); }
else if (speed > 60) {
Debug.Log(slowDown); }
}

© Unity 2021 Create with Code - Unit 2

37

Quiz Answer Key
ANSWER EXPLANATION

1 B Debug.Log() prints messages to the console and can accept String
parameters between quotation marks, such as “Hello there!”

2 C Since the “health” variable is an int, anything less than 1 would be “0”. The
sign for “less than” is “<”.

3 E “GameObject[]” is a GameObject array. You cannot instantiate an array, but
you can instantiate an object inside an array. So you could either remove the
array and have Instantiate use an individual object (option A) or you could
use an GameObject index of that Array (option D), but both would not work.

4 D Since it’s inside the PlayerController class, and it is destroying
other.gameObject, it is destroying something that the player collides with.

5 A “Input.GetKey” tests for the user holding down a key (as opposed to
KeyKeyDown, which test for a single press down of a Key).

6 A As it says in the documentation, Random.Range does not include the
maximum value for integers, but does include the maximum value for floats.
This means that randomInt cannot be 100, but randomFloat can be.

7 C Line 4, which generates the objectIndex, must be generating an index value
that is too high for the number of objects in the array. The best thing to do
would be to change it to “Random.Range(0, randomObjects.Length);

8 C The “Override” drop-down will allow you to apply any changes you’ve made to
your individual prefab to the original prefab object.

9 B According to the Scripting API, InvokeRepeating requires a string parameter,
then two floats.

10 D All variables should be declared first, then the void method, then the
if-condition telling them to speed up, then the else condition telling them to
slow down.

© Unity 2021 Create with Code - Unit 2

38

Bonus Features 2 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 2

39

Step 1: Overview
This tutorial outlines four potential bonus features for the Feed the Animals Prototype at varying
levels of difficulty:

● Easy: Vertical player movement
● Medium: Aggressive animals
● Hard: Game user interface
● Expert: Animal hunger bar

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 2

40

Step 2: Easy: Vertical player movement
Allow the player to move forward and backwards within a certain range.
This makes the game a bit more dynamic and allows for the addition of other features.

Step 3: Medium: Aggressive animals
Have animals that also spawn from the left and right side of the screen. If one of them hits you,
“Game Over” should be logged to the console.
This will make the game much more exciting and requires the player to stay on their toes,
especially if vertical movement is also implemented.

© Unity 2021 Create with Code - Unit 2

41

Step 5: Hard: Game user interface
At the start of the game, display in the console that the player’s Lives = 3 and Score = 0. If the
player feeds an animal, increase and display the Score. If the player misses an animal or is hit by
one, decrease and display the Lives. When the number of Lives reaches 0, log “Game Over” in the
console.

Step 6: Expert: Animal hunger bar
Display a “hunger bar” on top of each of the animals. Then, each time you feed one of them, the
hunger bar fills up a little. Each animal should require different amounts of food to successfully
“feed” them. They should only disappear after their hunger bars are full.

© Unity 2021 Create with Code - Unit 2

42

Step 7: Hints and solution walkthrough
Hints:

● Easy: Vertical player movement
○ Look at how we are doing the left and right movement range.

● Medium: Aggressive animals
○ Look at how we are currently spawning animals and doing collisions.

● Hard: Game user interface
○ You will need to update the score and lives in the DetectCollisions script, and update

the lives in the DestroyOutOfBounds script.
● Expert: Animal hunger bar

○ You will need to add a UI Slider object in World space Render Mode as a prefab for
each animal, then set the slider’s value through a script every time the animal is fed.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 2

https://connect-prd-cdn.unity.com/20210505/70ffeabd-706f-4556-b9a9-ea6bd8ba631a/Unit%202%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.197142511.1186801097.1620052249-59568313.1601905412

1

Create with Code
Unit 3 Lesson Plans

© Unity 2021 Create with Code - Unit 3

2

3.1 Jump Force

Steps:
Step 1: Open prototype and change background

Step 2: Choose and set up a player character

Step 3: Make player jump at start

Step 4: Make player jump if spacebar pressed

Step 5: Tweak the jump force and gravity

Step 6: Prevent player from double-jumping

Step 7: Make an obstacle and move it left

Step 8: Create a spawn manager

Step 9: Spawn obstacles at intervals

Example of project by end of lesson

Length: 90 minutes

Overview: The goal of this lesson is to set up the basic gameplay for this prototype. We
will start by creating a new project and importing the starter files. Next we
will choose a beautiful background and a character for the player to control,
and allow that character to jump with a tap of the spacebar. We will also
choose an obstacle for the player, and create a spawn manager that throws
them in the player’s path at timed intervals.

Project
Outcome:

The character, background, and obstacle of your choice will be set up. The
player will be able to press spacebar and make the character jump, as
obstacles spawn at the edge of the screen and block the player’s path.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use GetComponent to manipulate the components of GameObjects
- Influence physics of game objects with ForceMode.Impulse
- Tweak the gravity of your project with Physics.gravity
- Utilize new operators and variables like &&
- Use Bool variables to control the number of times something can be done
- Constrain the RigidBody component to halt movement on certain axes

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/182qzsa79efqMzMF58Arb_c_vR2RllCJFTqKRzSRGV6w/edit#heading=h.vq08cbljak3x
https://docs.google.com/document/d/182qzsa79efqMzMF58Arb_c_vR2RllCJFTqKRzSRGV6w/edit#heading=h.lz8q3nafoy4b

3

Step 1: Open prototype and change background
The first thing we need to do is set up a new project, import the starter files, and choose a
background for the game.
1. Open Unity Hub and create an empty “Prototype 3”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 3 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 3 scene and delete the Sample
Scene without saving

4. Select the Background object in the hierarchy, then
in the Sprite Renderer component > Sprite, select
the _City, _Nature, or _Town image

- New Concept: Sprites / Sprite
Renderer

- Tip: Browse all of the Player and
Background options before choosing
either - some work better with others

Step 2: Choose and set up a player character
Now that we’ve started the project and chosen a background, we need to set up a character for
the player to control.
1. From Course Library > Characters, Drag a character

into the hierarchy, rename it “Player”, then rotate it
on the Y axis to face to the right

2. Add a Rigid Body component
3. Add a box collider, then edit the collider bounds
4. Create a new “Scripts” folder in Assets, create a

“PlayerController” script inside, and attach it to the
player

- Don’t worry: We will get the player and
the background moving soon

- Warning: Keep isTrigger UNCHECKED!
- Tip: Use isometric view and the

gizmos to cycle around and edit the
collider with a clear perspective

© Unity 2021 Create with Code - Unit 3

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/12fe5762-ea5d-48ce-aff7-71c3dd0ec6a0/Prototype%203%20-%20Starter%20Files.zip?_ga=2.193866605.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

Step 3: Make player jump at start
Until now, we’ve only called methods on the entirety of a gameobject or the transform
component. If we want more control over the force and gravity of the player, we need to call
methods on the player’s Rigidbody component, specifically.

1. In PlayerController.cs, declare a new private
Rigidbody playerRb; variable

2. In Start(), initialize playerRb =
GetComponent<Rigidbody>();

3. In Start(), use the AddForce method to make the
player jump at the start of the game

- New Function: GetComponent
- Tip: The playerRb variable could apply

to anything, which is why we need to
specify using GetComponent

private Rigidbody playerRb;

void Start()
{

playerRb = GetComponent<Rigidbody>();
playerRb.AddForce(Vector3.up * 1000);

}

Step 4: Make player jump if spacebar pressed
We don’t want the player jumping at start - they should only jump when we tell it to by pressing
spacebar.

1. In Update() add an if-then statement checking if
the spacebar is pressed

2. Cut and paste the AddForce code from Start() into
the if-statement

3. Add the ForceMode.Impulse parameter to the
AddForce call, then reduce force multiplier value

- Warning: Don’t worry about the slow
jump double jump, or lack of
animation, we will fix that later

- Tip: Look at Unity documentation for
method overloads here

- New Function: ForceMode.Impulse
and optional parameters

void Start()
{

playerRb = GetComponent<Rigidbody>();
playerRb.AddForce(Vector3.up * 100);

}

© Unity 2021 Create with Code - Unit 3

5
void Update() {

if (Input.GetKeyDown(KeyCode.Space)) {
playerRb.AddForce(Vector3.up * 100, ForceMode.Impulse); } }

© Unity 2021 Create with Code - Unit 3

6

Step 5: Tweak the jump force and gravity
We need to give the player a perfect jump by tweaking the force of the jump, the gravity of the
scene, and the mass of the character.

1. Replace the hardcoded value with a new public float
jumpForce variable

2. Add a new public float gravityModifier variable and in
Start(), add Physics.gravity *= gravityModifier;

3. In the inspector, tweak the gravityModifer, jumpForce,
and Rigidbody mass values to make it fun

- New Function: the students about
something

- Warning: Don’t make
gravityModifier too high - the player
could get stuck in the ground

- New Concept: Times-equals
operator *=

private Rigidbody playerRb;
public float jumpForce;
public float gravityModifier;

void Start() {
playerRb = GetComponent<Rigidbody>();
Physics.gravity *= gravityModifier; }

void Update() {
if (Input.GetKeyDown(KeyCode.Space)) {

playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse); } }

Step 6: Prevent player from double-jumping
The player can spam the spacebar and send the character hurtling into the sky. In order to stop
this, we need an if-statement that makes sure the player is grounded before they jump.

1. Add a new public bool isOnGround variable and
set it equal to true

2. In the if-statement making the player jump, set
isOnGround = false, then test

3. Add a condition && isOnGround to the
if-statement

4. Add a new void onCollisionEnter method, set
isOnGround = true in that method, then test

- New Concept: Booleans
- New Concept: “And” operator (&&)
- New Function: OnCollisionEnter
- Tip: When assigning values, use one =

equal sign. When comparing values,
use == two equal signs

public bool isOnGround = true

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround) {

playerRb.AddForce(Vector3.up * jumpForce, ForceMode.Impulse);
isOnGround = false; } }

private void OnCollisionEnter(Collision collision) {
isOnGround = true; }

© Unity 2021 Create with Code - Unit 3

7

Step 7: Make an obstacle and move it left
We’ve got the player jumping in the air, but now they need something to jump over. We’re going
to use some familiar code to instantiate obstacles and throw them in the player’s path.

1. From Course Library > Obstacles, add an obstacle,
rename it “Obstacle”, and position it where it
should spawn

2. Apply a Rigid Body and Box Collider component,
then edit the collider bounds to fit the obstacle

3. Create a new “Prefabs” folder and drag it in to
create a new Original Prefab

4. Create a new “MoveLeft” script, apply it to the
obstacle, and open it

5. In MoveLeft.cs, write the code to Translate it to
the left according to the speed variable

6. Apply the MoveLeft script to the Background

- Warning: Be careful choosing your
obstacle in regards to the background.
Some obstacles may blend in, making
it difficult for the player to see what
they’re jumping over.

- Tip: Notice that when you drag it into
hierarchy, it gets placed at the spawn
location

private float speed = 30;

void Update() {
transform.Translate(Vector3.left * Time.deltaTime * speed);

}

Step 8: Create a spawn manager
Similar to the last project, we need to create an empty object Spawn Manager that will
instantiate obstacle prefabs.

1. Create a new “Spawn Manager” empty object, then
apply a new SpawnManager.cs script to it

2. In SpawnManager.cs, declare a new public
GameObject obstaclePrefab;, then assign your
prefab to the new variable in the inspector

3. Declare a new private Vector3 spawnPos at your
spawn location

4. In Start(), Instantiate a new obstacle prefab, then
delete your prefab from the scene and test

- Don’t worry: We’re just instantiating on
Start for now, we will have them
repeating later

- Tip: You’ve done this before! Feel free
to reference code from the last project

public GameObject obstaclePrefab;
private Vector3 spawnPos = new Vector3(25, 0, 0);

void Start() {
Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

© Unity 2021 Create with Code - Unit 3

8

Step 9: Spawn obstacles at intervals
Our spawn manager instantiates prefabs on start, but we must write a new function and utilize
InvokeRepeating if it to spawn obstacles on a timer. Lastly, we must modify the character’s
RigidBody so it can’t be knocked over.

1. Create a new void SpawnObstacle method, then
move the Instantiate call inside it

2. Create new float variables for startDelay and
repeatRate

3. Have your obstacles spawn on intervals using the
InvokeRepeating() method

4. In the Player RigidBody component, expand
Constraints, then Freeze all but the Y position

- New Concept: RigidBody constraints

private float startDelay = 2;
private float repeatRate = 2;

void Start() {
InvokeRepeating("SpawnObstacle", startDelay, repeatRate);
Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

void SpawnObstacle () {
Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

Lesson Recap
New
Functionality

● Player jumps on spacebar press
● Player cannot double-jump
● Obstacles and Background move left
● Obstacles spawn on intervals

New Concepts
and Skills

● GetComponent
● ForceMode.Impulse
● Physics.Gravity
● Rigidbody constraints
● Rigidbody variables
● Booleans
● Multiply/Assign (“*) Operator
● And (&&) Operator
● OnCollisionEnter()

Next Lesson ● We’re going to fix that weird effect we created by moving the background
left by having it actually constantly scroll using code!

© Unity 2021 Create with Code - Unit 3

9

3.2 Make the World Whiz By

Steps:
Step 1: Create a script to repeat background

Step 2: Reset position of background

Step 3: Fix background repeat with collider

Step 4: Add a new game over trigger

Step 5: Stop MoveLeft on gameOver

Step 6: Stop obstacle spawning on gameOver

Step 7: Destroy obstacles that exit bounds

Example of project by end of lesson

Length: 70 minutes

Overview: We’ve got the core mechanics of this game figured out: The player can tap
the spacebar to jump over incoming obstacles. However, the player appears
to be running for the first few seconds, but then the background just
disappears! In order to fix this, we need to repeat the background seamlessly
to make it look like the world is rushing by! We also need the game to halt
when the player collides with an obstacle, stopping the background from
repeating and stopping the obstacles from spawning. Lastly, we must
destroy any obstacles that get past the player.

Project
Outcome:

The background moves flawlessly at the same time as the obstacles, and the
obstacles will despawn when they exit game boundaries. With the power of
script communication, the background and spawn manager will halt when
the player collides with an obstacle. Colliding with an obstacle will also
trigger a game over message in the console log, halting the background and
the spawn manager.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use tags to label game objects and call them in the code
- Use script communication to access the methods and variables of other

scripts

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/19QNrdy6r6zTMaoBWH-Xr3A86nhII1LS6D0vh7BDALjk/edit#heading=h.oyln5lx6jjgt
https://docs.google.com/document/d/19QNrdy6r6zTMaoBWH-Xr3A86nhII1LS6D0vh7BDALjk/edit#heading=h.hg9gmwb3tihu

10

Step 1: Create a script to repeat background
We need to repeat the background and move it left at the same speed as the obstacles, to make
it look like the world is rushing by. Thankfully we already have a move left script, but we will
need a new script to make it repeat.
1. Create a new script called RepeatBackground.cs

and attach it to the Background Object
- Tip: Think through what needs to be

done: when the background moves
half of its length, move it back that
distance

Step 2: Reset position of background
In order to repeat the background and provide the illusion of a world rushing by, we need to
reset the background object’s position so it fits together perfectly.

1. Declare a new variable private Vector3 startPos;
2. In Start(), set the startPos variable to its actual

starting position by assigning it =
transform.position;

3. In Update(), write an if-statement to reset position
if it moves a certain distance

- Don’t worry: We’re setting it at 40 for
now, just to test basic functionality.
You could probably get it right with trial
and error… but what would happen if
you changed the size?

private Vector3 startPos;

void Start() {
startPos = transform.position; }

void Update() {
if (transform.position.x < startPos.x - 50) {

transform.position = startPos; } }

© Unity 2021 Create with Code - Unit 3

11

Step 3: Fix background repeat with collider
We’ve got the background repeating every few seconds, but the transition looks pretty awkward.
We need make the background loop perfectly and seamlessly with some new variables.

1. Add a Box Collider component to the Background
2. Declare a new private float repeatWidth variable
3. In Start(), get the width of the box collider, divided by 2
4. Incorporate the repeatWidth variable into the repeat

function

- Don’t worry: We’re only adding a
box collider to get the size of the
background

- New Function: .size.x

private Vector3 startPos;
private float repeatWidth;

void Start() {
startPos = transform.position;
repeatWidth = GetComponent<BoxCollider>().size.x / 2; }

void Update() {
if (transform.position.x < startPos.x - 50 repeatWidth) {

transform.position = startPos; } }

Step 4: Add a new game over trigger
When the player collides with an obstacle, we want to trigger a “Game Over” state that stops
everything In order to do so, we need a way to label and discern all game objects that the player
collides with.

1. In the inspector, add a “Ground” tag to the Ground and an
“Obstacle” tag to the Obstacle prefab

2. In PlayerController, declare a new public bool gameOver;
3. In OnCollisionEnter, add the if-else statement to test if

player collided with the “Ground” or an “Obstacle”
4. If they collided with the “Ground”, set isOnGround = true,

and if they collide with an “Obstacle”, set gameOver = true

- New Concept: Tags
- Warning: New tags will NOT be

automatically added after you
create them. Make sure to add
them yourself once they are
created.

- Tip: No need to say gameOver =
false, since it is false by default

public bool gameOver = false;

private void OnCollisionEnter(Collision collision) {
isOnGround = true;
if (collision.gameObject.CompareTag("Ground")) {

isOnGround = true;
} else if (collision.gameObject.CompareTag("Obstacle")) {

gameOver = true;
Debug.Log("Game Over!"); }

}

© Unity 2021 Create with Code - Unit 3

12

Step 5: Stop MoveLeft on gameOver
We’ve added a gameOver bool that seems to work, but the background and the objects
continue to move when they collide with an obstacle. We need the MoveLeft script to
communicate with the PlayerController, and stop once the player triggers gameOver.

1. In MoveLeft.cs, declare a new private
PlayerController playerControllerScript;

2. In Start(), initialize it by finding the Player and
getting the PlayerController component

3. Wrap the translate method in an if-statement
checking if game is not over

- New Concept: Script Communication
- Warning: Make sure to spell the

“Player” tag correctly

private float speed = 30;
private PlayerController playerControllerScript;

void Start() {
playerControllerScript =
GameObject.Find("Player").GetComponent<PlayerController>(); }

void Update() {
if (playerControllerScript.gameOver == false) {

transform.Translate(Vector3.left * Time.deltaTime * speed); } }

Step 6: Stop obstacle spawning on gameOver
The background and the obstacles stop moving when gameOver == true, but the Spawn
Manager is still raising an army of obstacles! We need to communicate with the Spawn
Manager script and tell it to stop when the game is over.

1. In SpawnManager.cs, get a reference to the playerControllerScript
using the same technique you did in MoveLeft.cs

2. Add a condition to only instantiate objects if gameOver == false

private PlayerController playerControllerScript;

void Start() {
InvokeRepeating("SpawnObstacle", startDelay, repeatRate);
playerControllerScript =
GameObject.Find("Player").GetComponent<PlayerController>(); }

void SpawnObstacle () {
if (playerControllerScript.gameOver == false) {

Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation);
} }

© Unity 2021 Create with Code - Unit 3

13

Step 7: Destroy obstacles that exit bounds
Just like the animals in Unit 2, we need to destroy any obstacles that exit boundaries. Otherwise
they will slide into the distance… forever!

1. In MoveLeft, in Update(); write an if-statement to
Destroy Obstacles if their position is less than a
leftBound variable

2. Add any comments you need to make your code
more readable

- Tip: Reference your code from
MoveLeft

private float leftBound = -15;

void Update() {
if (playerControllerScript.gameOver == false) {

transform.Translate(Vector3.left * Time.deltaTime * speed); }

if (transform.position.x < leftBound && gameObject.CompareTag("Obstacle")) {
Destroy(gameObject); } }

Lesson Recap
New
Functionality

● Background repeats seamlessly
● Background stops when player collides with obstacle
● Obstacle spawning stops when player collides with obstacle
● Obstacles are destroyed off-screen

New Concepts
and Skills

● Repeat background
● Get Collider width
● Script communication
● Equal to (==) operator
● Tags
● CompareTag()

Next Lesson ● Our character, while happy on the inside, looks a little too rigid on the
outside, so we’re going to do some work with animations

© Unity 2021 Create with Code - Unit 3

14

3.3 Don’t Just Stand There

Steps:
Step 1: Explore the player’s animations

Step 2: Make the player start off at a run

Step 3: Set up a jump animation

Step 4: Adjust the jump animation

Step 5: Set up a falling animation

Step 6: Keep player from unconscious jumping

Example of project by end of lesson

Length: 60 minutes

Overview: The game is looking great so far, but the player character is a bit… lifeless.
Instead of the character simply sliding across the ground, we’re going to give
it animations for running, jumping, and even death! We will also tweak the
speed of these animations, timing them so they look perfect in the game
environment.

Project
Outcome:

With the animations from the animator controller, the character will have 3
new animations that occur in 3 different game states. These states include
running, jumping, and death, all of which transition smoothly and are timed to
suit the game.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Manage basic animation states in the Animator Controller
- Adjust the speed of animations to suit the character or the game
- Set a default animation and trigger others with anim.SetTrigger
- Set a permanent state for “Game Over” with anim.SetBool

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/1veRsjg3zuRcYgoiA-QUcCP3hKtg0xY3meU_mdJsmBDc/edit#heading=h.f1f5jal6o0ef
https://docs.google.com/document/d/1veRsjg3zuRcYgoiA-QUcCP3hKtg0xY3meU_mdJsmBDc/edit#heading=h.9xw2rvio6erz
https://docs.google.com/document/d/1veRsjg3zuRcYgoiA-QUcCP3hKtg0xY3meU_mdJsmBDc/edit#heading=h.9firn3g29283

15

Step 1: Explore the player’s animations
In order to get this character moving their arms and legs, we need to explore the Animation
Controller.
1. Double-click on the Player’s Animation Controller,

then explore the different Layers, double-clicking
on States to see their animations and Transitions
to see their conditions

- New Concept: Animator Controller
- New Concept: States and Conditions

© Unity 2021 Create with Code - Unit 3

16

Step 2: Make the player start off at a run
Now that we’re more comfortable with the animation controller, we can tweak some variables
and settings to make the player look like they’re really running.
1. In the Parameters tab, change the Speed_f

variable to 1.0
2. Right-click on Run_Static > Set as Layer Default

State
3. Single-click the the Run_Static state and adjust

the Speed value in the inspector to match the
speed of the background

- Tip: Notice how it transitions from idle
to walk to Run - looks awkward - that’s
why need to make run default

© Unity 2021 Create with Code - Unit 3

17

Step 3: Set up a jump animation
The running animation looks good, but very odd when the player leaps over obstacles. Next up,
we need to add a jumping animation that puts a real spring in their step.
1. In PlayerController.cs, declare a new private Animator

playerAnim;
2. In Start(), set playerAnim = GetComponent<Animator>();
3. In the if-statement for when the player jumps, trigger

the jump:
animator.SetTrigger(“Jump_trig”);

- New Function: anim.SetTrigger
- Tip: SetTrigger is helpful when

you just want something to
happen once then return to
previous state (like a jump
animation)

private Animator playerAnim;

void Start() {
playerRb = GetComponent<Rigidbody>();
playerAnim = GetComponent<Animator>();
Physics.gravity *= gravityModifier; }

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround) {

playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse);
isOnGround = false;
playerAnim.SetTrigger("Jump_trig"); } }

Step 4: Adjust the jump animation
The running animation plays, but it’s not perfect yet, we should tweak some of our character’s
physics-related variables to get this looking just right.

1. In the Animator window, click on the Running_Jump state,
then in the inspector and reduce its Speed value to slow
down the animation

2. Adjust the player’s mass, jump force, and gravity modifier
to get your jump just right

© Unity 2021 Create with Code - Unit 3

18

Step 5: Set up a falling animation
The running and jumping animations look great, but there’s one more state that the character
should have an animation for. Instead of continuing to sprint when it collides with an object, the
character should fall over as if it has been knocked out.

1. In the condition that player collides with Obstacle,
set the Death bool to true

2. In the same if-statement, set the DeathType
integer to 1

- New Function: anim.SetBool
- New Function: anim.SetInt

public bool gameOver = false;

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Ground")) {

isOnGround = true;
} else if (collision.gameObject.CompareTag("Obstacle")) {

Debug.Log("Game Over")
gameOver = true;
playerAnim.SetBool("Death_b", true);
playerAnim.SetInteger("DeathType_int", 1);

}
}

Step 6: Keep player from unconscious jumping
Everything is working perfectly, but there’s one small disturbing bug to fix: the player can jump
from an unconscious position, making it look like the character is being defibrillated.

1. To prevent the player from jumping while
unconscious, add && !gameOver to the jump
condition

- New Concept: ! “Does not” and !=
“Does not equal” operators

- Tip: gameOver != true is the same as
gameOver == false

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {

playerRb.AddForce(Vector3.up * jumpForce, ForceMode.Impulse);
isOnGround = false;
animator.SetTrigger("Jump_trig");

}
}

© Unity 2021 Create with Code - Unit 3

19

Lesson Recap
New
Functionality

● The player starts the scene with a fast-paced running animation
● When the player jumps, there is a jumping animation
● When the player crashes, the player falls over

New Concepts
and Skills

● Animation Controllers
● Animation States, Layers, and Transitions
● Animation parameters
● Animation programming
● SetTrigger(), SetBool(), SetInt()
● Not (!) operator

Next Lesson ● We’ll really polish this game up to make it look nice using particles and
sound effects!

© Unity 2021 Create with Code - Unit 3

20

3.4 Particles and Sound Effects

Steps:
Step 1: Customize an explosion particle

Step 2: Play the particle on collision

Step 3: Add a dirt splatter particle

Step 4: Add music to the camera object

Step 5: Declare variables for Audio Clips

Step 6: Play Audio Clips on jump and crash

Example of project by end of lesson

Length: 60 minutes

Overview: This game is looking extremely good, but it’s missing something critical:
Sound effects and Particle effects! Sounds and music will breathe life into an
otherwise silent game world, and particles will make the player’s actions
more dynamic and eye-popping. In this lesson, we will add cool sounds and
particles when the character is running, jumping, and crashing.

Project
Outcome:

Music will play as the player runs through the scene, kicking up dirt particles
in a spray behind their feet. A springy sound will play as they jump and a
boom will play as they crash, bursting in a cloud of smoke particles as they
fall over.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Attach particle effects as children to game objects
- Stop and play particle effects to correspond with character animation

states
- Work with Audio Sources and Listeners to play background music
- Add sound effects to add polish to your project

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/1IzXfgr0CZzfZcnpJwdUeUOQOTO-ErXTXMfpECBeAOx8/edit#heading=h.h1ix6qvgezeb
https://docs.google.com/document/d/1IzXfgr0CZzfZcnpJwdUeUOQOTO-ErXTXMfpECBeAOx8/edit#heading=h.v4zxsaz3l4ah

21

Step 1: Customize an explosion particle
The first particle effect we should add is an explosion for when the player collides with an
obstacle.
1. From the Course Library > Particles, drag

FX_Explosion_Smoke into the hierarchy, then use
the Play / Restart / Stop buttons to preview it

2. Play around with the settings to get your particle
system the way you want it

3. Make sure to uncheck the Play on Awake setting
4. Drag the particle onto your player to make it a

child object, then position it relative to the player

- New Concept: Particle Effects
- Warning: Don’t go crazy customizing

your particle effects, you could easily
get sidetracked

- New Concept: Child objects with
relative positions

- Tip: Hovering over the settings while
editing your particle provides great
tool tips

Step 2: Play the particle on collision
We discovered the particle effects and found an explosion for the crash, but we need to assign
it to the Player Controller and write some new code in order to play it.

1. In PlayerController.cs, declare a new public ParticleSystem
explosionParticle;

2. In the Inspector, assign the explosion to the explosion particle variable
3. In the if-statement where the player collides with an obstacle, call

explosionParticle.Play();, then test and tweak the particle properties

- New Function:
particle.Play()

public ParticleSystem explosionParticle;

private void OnCollisionEnter(Collision collision other) {
if (other.gameObject.CompareTag("Ground")) {

isOnGround = true;
} else if (other.gameObject.CompareTag("Obstacle")) {

... explosionParticle.Play(); } }

© Unity 2021 Create with Code - Unit 3

22

Step 3: Add a dirt splatter particle
The next particle effect we need is a dirt splatter, to make it seem like the player is kicking up
ground as they sprint through the scene. The trick is that the particle should only play when the
player is on the ground.

1. Drag FX_DirtSplatter as the Player’s child object, reposition
it, rotate it, and edit its settings

2. Declare a new public ParticleSystem dirtParticle;, then
assign it in the Inspector

3. Add dirtParticle.Stop(); when the player jumps or collides
with an obstacle

4. Add dirtParticle.Play(); when the player lands on the ground

- New Function:
particle.Stop()

public ParticleSystem dirtParticle

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {
... dirtParticle.Stop(); } }

private void OnCollisionEnter(Collision collision other) {
if (other.gameObject.CompareTag("Ground")) { ... dirtParticle.Play();
} else if (other.gameObject.CompareTag("Obstacle")) { ... dirtParticle.Stop(); } }

Step 4: Add music to the camera object
Our particle effects are looking good, so it’s time to move on to sounds! In order to add music,
we need to attach sound component to the camera. After all, the camera is the eyes AND the
ears of the scene.

1. Select the Main Camera object, then Add
Component > Audio Source

2. From Course Library > Sound, drag a music clip
onto the AudioClip variable in the inspector

3. Reduce the volume so it will be easier to hear
sound effects

4. Check the Loop checkbox

- New Concept: Audio Listener and
Audio Sources

- Tip: Music shouldn’t appear to come
from a particular location in 3D space,
which is why we’re adding it directly to
the camera

© Unity 2021 Create with Code - Unit 3

23

Step 5: Declare variables for Audio Clips
Now that we’ve got some nice music playing, it’s time to add some sound effects. This time
audio clips will emanate from the player, rather than the camera itself.

1. In PlayerController.cs, declare a new public
AudioClip jumpSound; and a new public AudioClip
crashSound;

2. From Course Library > Sound, drag a clip onto each
new sound variable in the inspector

- Tip: Adding sound effects is not as
simple as adding music, because we
need to trigger the events in our code

© Unity 2021 Create with Code - Unit 3

24

Step 6: Play Audio Clips on jump and crash
We’ve assigned audio clips to the jump and the crash in PlayerController. Now we need to play
them at the right time, giving our game a full audio experience

1. Add an Audio Source component to the player
2. Declare a new private AudioSource playerAudio;

and initialize it as playerAudio =
GetComponent<AudioSource>();

3. Call playerAudio.PlayOneShot(jumpSound, 1.0f);
when the character jumps

4. Call playerAudio.PlayOneShot(crashSound, 1.0f);
when the character crashes

- Don’t worry: Declaring a new
AudioSource variable is just like
declaring a new Animator or RigidBody

private AudioSource playerAudio;

void Start() {
... playerAudio = GetComponent<AudioSource>(); }

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {

... playerAudio.PlayOneShot(jumpSound, 1.0f); } }

private void OnCollisionEnter(Collision collision other) {
...
} else if (other.gameObject.CompareTag("Obstacle"))
{ ... playerAudio.PlayOneShot(crashSound, 1.0f); } }

Lesson Recap
New
Functionality

● Music plays during the game
● Particle effects at the player’s feet when they run
● Sound effects and explosion when the player hits an obstacle

New Concepts
and Skills

● Particle systems
● Child object positioning
● Audio clips and Audio sources
● Play and stop sound effects

© Unity 2021 Create with Code - Unit 3

25

Challenge 3
Balloons & Booleans

Challenge
Overview:

Apply your knowledge of physics, scrolling backgrounds, and special effects
to a balloon floating through town, picking up tokens while avoiding
explosives. You will have to do a lot of troubleshooting in this project because
it is riddled with errors.

Challenge
Outcome:

- The balloon floats upwards as the player holds spacebar
- The background seamlessly repeats, simulating the balloon’s movement
- Bombs and Money tokens are spawned randomly on a timer
- When you collide with the Money, there’s a particle and sound effect
- When you collide with the Bomb, there’s an explosion and the background

stops

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Declaring and initializing variables with the GetComponent method
- Using booleans to trigger game states
- Displaying particle effects at a particular location relative to a gameobject
- Seamlessly scrolling a repeating background

Challenge
Instructions:

- Open your Prototype 3 project
- Download the "Challenge 3 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 3 > Instructions folder, use the

"Challenge 3 - Instructions" and Outcome video as a guide to complete the
challenge

© Unity 2021 Create with Code - Unit 3

26

Challenge Task Hint

1 The player can’t
control the balloon

The balloon should float up
as the player presses
spacebar

There is a “NullReferenceExcepton”
error on the player’s rigidBody
variable - it has to be assigned in
Start() using the GetComponent<>
method

2 The background only
moves when the game
is over

The background should move
at start, then stop when the
game is over

In MoveLeftX.cs, the objects should
only Translate to the left if the game
is NOT over

3 No objects are being
spawned

Make bombs or money
objects spawn every few
seconds

There is an error message saying,
“Trying to Invoke method:
SpawnManagerX.PrawnsObject
couldn't be called” - spelling matters

4 Fireworks appear to
the side of the balloon

Make the fireworks display at
the balloon’s position

The fireworks particle is a child
object of the Player - but its location
still has to be set at the same
location

5 The background is not
repeating properly

Make the background repeat
seamlessly

The repeatWidth variable should be
half of the background’s width, not
half of its height

Bonus Challenge Task Hint

X The balloon can float
way too high

Prevent the player from
floating their balloon too high

Add a boolean to check if the balloon
isLowEnough, then only allow the
player to add upwards force if that
boolean is true

Y The balloon can drop
below the ground

Make the balloon appear to
bounce off of the ground,
preventing it from leaving the
bottom of the screen. There
should be a sound effect
when this happens, too!

Figure out a way to test if the balloon
collides with the ground object, then
add an impulse force upward if it
does

© Unity 2021 Create with Code - Unit 3

27

Challenge Solution

1 In PlayerControllerX.cs, in Start(), assign playerRb just like the playerAudio variable:

playerAudio = GetComponent<AudioSource>();

playerRb = GetComponent<Rigidbody>();

2 In MoveLeftX.cs, the objects should only Translate to the left if the game is NOT over - it’s
currently checking if the game IS over:

if (! playerControllerScript.gameOver) {

transform.Translate(Vector3.left * speed * Time.deltaTime, Space.World);

}

3 In SpawnManagerX.cs, in Start(), the InvokeRepeating method is using an incorrect spelling of
“SpawnObjects” - correct the spelling error

void Start() {

InvokeRepeating("PrawnsObjectSpawnObjects", spawnDelay, spawnInterval);

...

}

4 Select the Fireworks child object and reposition it to the same location as the Player

5 In RepeatBackgroundX.cs, in Start(), the repeatWidth should be dividing the X size (width) of
the box collider by 2, not the Y size (height)

repeatWidth = GetComponent<BoxCollider>().size.y x / 2;

© Unity 2021 Create with Code - Unit 3

28

Bonus Challenge Solution

X1 In PlayerControllerX.cs create a boolean to track whether the player is low enough to float
upwards, then in Update(), set it to false if the player is above a certain Y value and, else, set it
to true

public bool isLowEnough;

void Update() {

if (transform.position.y > 13) {

isLowEnough = false;

} else {

isLowEnough = true;

}

}

X2 In the if-statement testing for the player pressing spacebar, add a condition testing that the
isLowEnough boolean is true:

if (Input.GetKey(KeyCode.Space) && isLowEnough && !gameOver) {
playerRb.AddForce(Vector3.up * floatForce

}

Y1 Add a tag to the Ground object so that you can easily test for a collision with it

Y2 In PlayerControllerX.cs, in the OnCollisionEnter method, add a third else-if checking if the
balloon collided with the ground during the game, and if so, to add an impulse force upwards

private void OnCollisionEnter(Collision other) {

...

} else if (other.gameObject.CompareTag("Ground") && !gameOver)

{

playerRb.AddForce(Vector3.up * 10, ForceMode.Impulse);

}

© Unity 2021 Create with Code - Unit 3

29

Y3 To add a sound effect, declare a new AudioClip variable and assign it in the inspector, then use
the PlayOneShot method when the player collides with the ground.

public AudioClip moneySound;

public AudioClip explodeSound;

public AudioClip bounceSound;

private void OnCollisionEnter(Collision other) {

...

} else if (other.gameObject.CompareTag("Ground") && !gameOver)

{

rigidBody.AddForce(Vector3.up * 10, ForceMode.Impulse);

playerAudio.PlayOneShot(bounceSound, 1.5f);

}

© Unity 2021 Create with Code - Unit 3

30

Unit 3 Lab
Player Control

Steps:
Step 1: Create PlayerController and plan your code

Step 2: Basic movement from user input

Step 3: Constrain the Player’s movement

Step 4: Code Cleanup and Export Backup

Example of progress by end of lab

Length: 60 minutes

Overview: In this lesson, you program the player’s basic movement, including the code
that limits that movement. Since there are a lot of different ways a player can
move, depending on the type of project you’re working on, you will not be
given step-by-step instructions on how to do it. In order to do this, you will
need to do research, reference other code, and problem-solve when things go
wrong.

Project
Outcome:

The player will be able to move around based on user input, but not be able to
move where they shouldn’t.

Learning
Objectives:

By the end of this lab, you will be able to:
- Program the type of player movement you want based on user input
- Restrict player movement in the manner that is appropriate, depending on

the needs of the project
- Troubleshoot issues and find workarounds related to player movement

© Unity 2021 Create with Code - Unit 3

31

Step 1: Create PlayerController and plan your code
Regardless of what type of movement your player has, it’ll definitely need a PlayerController
script
1. Select your Player and add a

Rigidbody component (with or without
gravity enabled)

2. In your Assets folder, create a new
“Scripts” folder

3. Inside the new “Scripts” folder, create
a new “PlayerController” C# script

4. Attach it to the player, then open it
5. Determine what type of programming

will be required for your Player

- Tip: Rigidbody is usually helpful - also detect
triggers

- Tip: Think about all the movement we’ve done so
far:
- Prototype 1 - forward/back and rotate based

on up/down and left/right arrows
- Challenge 1 - plane moving constantly, rotated

direction based on arrows
- Prototype 2 - side-to-side movement and

spacebar to fire a projectile
- Challenge 2 - No player movement, but

projectile launch on spacebar
- Prototype 3 - background move, and player

jumps on spacebar press
- Challenge 3 - background move and player

floats up when spacebar down
- Don’t worry: If you want your player to move like

the ball in Prototype 4, just use basic alternative for
now

References to the various types of movement programmed up to this point in the course

By the end of this step, you should have a new Script open and a solid plan for what will go in it.

© Unity 2021 Create with Code - Unit 3

32

Step 2: Basic movement from user input
The first thing we’ll program is the player’s very basic movement based on user input
1. Declare a new private float speed variable
2. If using physics, declare a new Rigidbody

playerRb variable for it and initialize it in Start()
3. If using arrow keys, declare new verticalInput

and/or horizontalInput variables
4. If basing your movement off a key press,

create the if-statement to test for the KeyCode
5. Use either the Translate method or AddForce

method (if using physics) to move your
character

- Explanation: Rigidbody movement with
AddForce is different than Translate -
looks more similar to real world movement
with force being applied

- Don’t worry: If your player is colliding with
the ground or other objects in weird ways -
we’ll fix that soon

- Tip: You can look through your old code
for references to how you did things

By the end of this step, the player should be able to move the way that you want based on user
input.

© Unity 2021 Create with Code - Unit 3

33

Step 3: Constrain the Player’s movement
No matter what kind of movement your player has, it needs to be limited for gameplay

1. If your player is colliding with objects they shouldn’t
(including the ground), check the “Is trigger” box in the
Collider component

2. If your player’s position or rotation should be
constrained, expand the constraints in the Rigidbody
component and constrain certain axes

3. If your Player can go off the screen, write an
if-statement checking and resetting the position

4. If the Player can double-jump or fly off-screen, create a
boolean variable that limits the user’s ability to do so

5. If your player should be constrained by physical
barriers along the outside of the play area, create more
primitive Planes or Cubes and scale them to form
walls

- Tip: Check the Global/Local
checkbox above scene view to see
the rotation of the player

- Tip: Look back at Prototype 2 for
the if-then statement to keep the
player on screen

- Tip: Look back at Prototype 3 and
Challenge 3 for examples of
booleans to prevent
double-jumping or going too high

By the end of this step, the player’s movement should be constrained in such a way that makes your
game playable.

© Unity 2021 Create with Code - Unit 3

34

Step 4: Code Cleanup and Export Backup
Now that we have the basic functionality working, let’s clean up our code and make a backup.

1. Create new Empty game objects and nest objects
inside them to organize your hierarchy

2. Clean up your Update methods by moving the
blocks of code into new void functions (e.g.
“MovePlayer()” or “ConstrainPlayerPosition()”)

3. Add comments to make your code more readable
4. Test to make sure everything still works, then save

your scene
5. Right-click on your Assets folder > Export Package

then save a new version in your Backups folder

- Tip: You always want to keep your
Update() functions clean or they can
become overwhelming - it should be
easy to see what actions are
happening every frame

// Move the player left/right and up/down based on arrow keys

void MovePlayer() {

...

}

// Prevent the player from leaving the screen top/bottom

void ConstrainPlayerPosition() {

...

}

By the end of this step, your code should be commented, organized, and backed up.

Lesson Recap
New Progress ● Player can move based on user input

● Player movement is constrained to suit the requirements of the game

New Concepts
and Skills

● Program in C# independently
● Troubleshoot issues independently

© Unity 2021 Create with Code - Unit 3

35

Quiz Unit 3
QUESTION CHOICES

1 You are trying to STOP spawning enemies when the
player has died and have created the two scripts below
to do that. However, there is an error on the underlined
code, “isAlive” in the EnemySpawner script. What is
causing that error?

a. The “p” should be capitalized in
“playerController.isAlive”

b. The “bool” in the
PlayerController class needs a
“public” access modifier

c. The if-statement cannot be in
the Update method

d. “isAlive” must start with a
capital “I” (“IsAlive”)

public class PlayerController : MonoBehaviour {

bool isAlive;

...

}

public class EnemySpawner : MonoBehaviour {

void Start() {

playerController = GameObject.Find("Player").GetComponent<PlayerController>();

}

void Update() {

if (playerController.isAlive == false) {

StopSpawning();

}

}

}

2 Match the following animation methods with its set of
parameters

a. 1A, 2B, 3C
b. 1A, 2C, 3B
c. 1B, 2A, 3C
d. 1C, 2A, 3B1. anim.SetBool(______); A. “Celebrate”

2. anim.SetTrigger(_____); B. “Alive”, true

3. anim.SetInt(_____); C. “ThrowType”, 2

© Unity 2021 Create with Code - Unit 3

36

3 Given the animation controller / state machine below,
which code will make the character transition from the
“Idle” state to the “Walk” state?

a. setFloat(“Speed_f”, 0.3f);
b. setInt(“Speed_f”, 1);
c. setTrigger(“Speed_f”);
d. setFloat(“Speed_f”, 0.1f);

4 Which of these is the correct way to get a reference to
an AudioSource component on a GameObject?

a. Line A
b. Line B
c. Line C
d. Line DA. audio = GetComponent<AudioSource>();

B. audio = GetComponent(AudioSource)<>;

C. audio = AudioSource.GetComponent<>();

D. audio = GetComponent.Audio<Source>;

5 When you run a project with the code below, you get the
following error: “NullReferenceException: Object
reference not set to an instance of an object.” What is
most likely the problem?

a. The Player object does not
have a collider

b. The Enemy object does not
have a Rigidbody component

c. The “Start” method should
actually be “Update”

d. There is no object named
“Player” in the scene

public class Enemy : MonoBehaviour {

void Start() {

player = GameObject.Find("Player");

}

void OnTriggerEnter(Collider other) {

if (player.transform.position.z > 10) {

Destroy(other.gameObject);

}

}

}

© Unity 2021 Create with Code - Unit 3

37

6 Which of the following conditions properly tests that the
game is NOT over and the player IS on the ground

a. Line A
b. Line B
c. Line C
d. Line DA. if (gameOver == false AND isOnGround)

B. if (gameOver && isOnGround == true)

C. if (gameOver != true && isOnGround)

D. if (gameOver != false && isOnGround == true)

7 By default, what will be the first state used by this
Animation Controller?

a. “Any State”
b. “NotCrouched”
c. “Death”
d. “Crouch_Up”

8 Which of the following variable declarations observes
Unity’s standard naming conventions (especially as it
relates to capitalization)?

a. 2 and 4
b. 3 and 6
c. 4 and 5
d. 1 and 5

1. private Animator anim;

2. private player Player;

3. Float JumpForce = 10.0f;

4. bool gameOver = True;

5. private Vector3 startPos;

6. Public gameObject ObstaclePrefab;

© Unity 2021 Create with Code - Unit 3

38

9 Which of the following is most likely the condition for the
transition between “Run” and “Walk” shown below?

a. Jump_b is true
b. Speed_f is Less than 0.5
c. Speed_f is Greater than 0.5
d. Animation_int is Less than 10

A.

B.

C.

D.

10 Which of the following do you think makes the most
sense for a simple movement state machine?

a. Image A
b. Image B
c. Image C

A.

B.

C.

© Unity 2021 Create with Code - Unit 3

39

Quiz Answer Key
ANSWER EXPLANATION

1 B In order to access a variable from another class, that variable needs to be
“public”. By default, if there is no access modifier, variables are private and
cannot be accessed by another class

2 C SetInt would require an integer parameter, SetBool would require a boolean
parameter, and SetTrigger only requires the trigger name/id

3 A You can see in the inspector that the condition for this transition is that
“Speed_f is greater than 0.25”. You can tell it’s a float because it uses
decimal points and it must be higher than 0.25.

4 A “GetComponent<AudioSource>();” is the correct way to use the
GetComponent method

5 D If you try to “Find” an object that is not in the scene, you will get a
“NullReferenceException” error.

6 C != means “does not equal to”, so “gameOver != true” is testing that the game
is not over. If you just use the boolean’s name like “isOnGround,” this tests
whether that boolean is true. The syntax for testing two conditions is “&&”.

7 B The default starting state is the one that the “Entry” state connects to.

8 D 1. private Animator anim; - this is correct
2. private player Player; - should be “private Player player”
3. Float JumpForce = 10.0f; - should be “float jumpForce = 10.0f”
4. bool gameOver = True; - should be “true” (lowercase “t”)
5. private Vector3 startPos; - this is correct
6. Public gameObject ObstaclePrefab; - should be “public GameObject

obstaclePrefab”

9 B If you are transitioning from Running to Walking, that most likely is a result of
reducing speed, so checking if “Speed_f is less than 0.5” is most likely

10 A You should start with “Idle” as the default state, then be able to transition
between any of the states (Idling, Walking, Running). There should definitely
be a transition between Walk and Run.

© Unity 2021 Create with Code - Unit 3

40

Bonus Features 3 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 3

41

Step 1: Overview
This tutorial outlines four potential bonus features for the Run and Jump Prototype at varying levels
of difficulty:

● Easy: Randomize obstacles
● Medium: Double jump
● Hard: Dash ability and score
● Expert: Game start animation

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 3

42

Step 2: Easy: Randomize obstacles
Randomly select from a variety of obstacles to spawn.
You could even have piles of obstacles instead of single ones, forcing the player to pay closer
attention.

Step 3: Medium: Double jump
Program a double-jump, so the player can jump one additional time once already in the air. Along
with this, you could create a new extra tall obstacle that requires a double-jump (maybe two
obstacles stacked on top of each other).
This adds a completely new gameplay mechanic. And who doesn’t love a double-jump?

© Unity 2021 Create with Code - Unit 3

43

Step 5: Hard: Dash ability and score
Add a “dash” / “super speed” ability where, if the player is holding a certain key, the player runs
faster through the world, matched by a faster running animation. Use Debug.Log to track the
player’s increasing score from 0, which should increase twice as fast during “dash” mode, and
then stop counting when the game is over, reflecting the player’s score.
This adds a completely new strategic element to the game, where players might implement
different tactics to maximize their score.

Step 6: Expert: Game start animation
Rather than your player starting off running in place with the background moving, have the player
walk into frame from the left, then begin running in place alongside the moving background.
This gives the player a moment to collect themselves rather than being thrown straight into
gameplay.

© Unity 2021 Create with Code - Unit 3

44

Step 7: Hints and solution walkthrough
Hints:

● Easy: Randomize obstacles
○ Convert the prefab holder inside the SpawnManager to an array.

● Medium: Double jump
○ Try using a boolean to limit the player to double-jumping once

● Hard: Dash ability and score
○ Try using a boolean to determine whether the player is running fast

● Expert: Game start animation
○ Try lerping the players position.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 3

https://connect-prd-cdn.unity.com/20210505/00ca7bdf-a2e1-4095-a29d-d084e759c206/Unit%203%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.267198670.1186801097.1620052249-59568313.1601905412

1

Create with Code
Unit 4 Lesson Plans

© Unity 2021 Create with Code - Unit 4

2

4.1 Watch Where You’re Going

Steps:
Step 1: Create project and open scene

Step 2: Set up the player and add a texture

Step 3: Create a focal point for the camera

Step 4: Rotate the focal point by user input

Step 5: Add forward force to the player

Step 6: Move in direction of focal point

Example of project by end of lesson

Length: 60 minutes

Overview: First thing’s first, we will create a new prototype and download the starter
files! You’ll notice a beautiful island, sky, and particle effect... all of which can
be customized! Next you will allow the player to rotate the camera around the
island in a perfect radius, providing a glorious view of the scene. The player
will be represented by a sphere, wrapped in a detailed texture of your choice.
Finally you will add force to the player, allowing them to move forwards or
backwards in the direction of the camera.

Project
Outcome:

The camera will evenly rotate around a focal point in the center of the island,
provided a horizontal input from the player. The player will control a textured
sphere, and move them forwards or backwards in the direction of the
camera’s focal point.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Apply Texture wraps to objects
- Attach a camera to its focal point using parent-child relationships
- Transform objects based on local XYZ values

© Unity 2021 Create with Code - Unit 4

https://docs.google.com/document/d/1O3XwIy4lMnZAGojD0FrXXSJw1DOlAfO1zMmINTggsF0/edit#heading=h.9xw2rvio6erz
https://docs.google.com/document/d/1O3XwIy4lMnZAGojD0FrXXSJw1DOlAfO1zMmINTggsF0/edit#heading=h.jpvf7062snkj

3

Step 1: Create project and open scene
You’ve done it before, and it’s time to do it again... we must start a new project and import the
starter files.
1. Open Unity Hub and create an empty “Prototype 4”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 4 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 4 scene and delete the Sample
Scene without saving

4. Click Run to see the particle effects

- Don’t worry: You can change texture of
floating island and the color of the sky
later

- Don’t worry: We’re in
isometric/orthographic view for a
reason: It just looks nicer when we
rotate around the island

© Unity 2021 Create with Code - Unit 4

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/c8291200-b024-4de8-8c86-2bfd0f323be3/Prototype%204%20-%20Starter%20Files.zip?_ga=2.33909089.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

Step 2: Set up the player and add a texture
We’ve got an island for the game to take place on, and now we need a sphere for the player to
control and roll around.

1. In the Hierarchy, create 3D Object > Sphere
2. Rename it “Player”, reset its position and increase its XYZ scale

to 1.5
3. Add a RigidBody component to the Player
4. From the Library > Textures, drag a texture onto the sphere

- New Concept:
Texture wraps

Step 3: Create a focal point for the camera
If we want the camera to rotate around the game in a smooth and cinematic fashion, we need
to pin it to the center of the island with a focal point.

1. Create a new Empty Object and rename it “Focal Point”,
2. Reset its position to the origin (0, 0, 0), and make the

Camera a child object of it
3. Create a new “Scripts” folder, and a new “RotateCamera”

script inside it
4. Attach the “RotateCamera” script to the Focal Point

- Don’t worry: This whole “focal
point” business may be
confusing at first, but it will make
sense once you see it in action

- Tip: Try rotating the Focal point
around the Y axis and see the
camera rotate in scene view

© Unity 2021 Create with Code - Unit 4

5

Step 4: Rotate the focal point by user input
Now that the camera is attached to the focal point, the player must be able to rotate it - and the
camera child object - around the island with horizontal input.

1. Create the code to rotate the camera based on
rotationSpeed and horizontalInput

2. Tweak the rotation speed value to get the speed
you want

- Tip: Horizontal input should be
familiar, we used it all the way back in
Unit 1! Feel free to reference your old
code for guidance.

public float rotationSpeed;

void Update()
{

float horizontalInput = Input.GetAxis("Horizontal");
transform.Rotate(Vector3.up, horizontalInput * rotationSpeed * Time.deltaTime);

}

Step 5: Add forward force to the player
The camera is rotating perfectly around the island, but now we need to move the player.

1. Create a new “PlayerController” script, apply it to the
Player, and open it

2. Declare a new public float speed variable and initialize it
3. Declare a new private Rigidbody playerRb and initialize

it in Start()
4. In Update(), declare a new forwardInput variable based

on “Vertical” input
5. Call the AddForce() method to move the player forward

based forwardInput

- Tip: Moving objects with
RigidBody and Addforce should
be familiar, we did it back in Unit
3! Feel free to reference old code.

- Don’t worry: We don’t have
control over its direction yet -
we’ll get to that next

private Rigidbody playerRb;
public float speed = 5.0f;

void Start() {
playerRb = GetComponent<Rigidbody>(); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");
playerRb.AddForce(Vector3.forward * speed * forwardInput); }

© Unity 2021 Create with Code - Unit 4

6

Step 6: Move in direction of focal point
We’ve got the ball rolling, but it only goes forwards and backwards in a single direction! It
should instead move in the direction the camera (and focal point) are facing.

1. Declare a new private GameObject focalPoint; and
initialize it in Start(): focalPoint =
GameObject.Find("Focal Point");

2. In the AddForce call, Replace Vector3.forward with
focalPoint.transform.forward

- New Concept: Global vs Local XYZ
- Tip: Global XYZ directions relate to the

entire scene, whereas local XYZ
directions relate to the object in
question

private GameObject focalPoint;

void Start() {
playerRb = GetComponent<Rigidbody>();
focalPoint = GameObject.Find("Focal Point"); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");
playerRb.AddForce(Vector3.forward focalPoint.transform.forward
* speed * forwardInput); }

Lesson Recap
New
Functionality

● Camera rotates around the island based on horizontal input
● Player rolls in direction of camera based on vertical input

New Concepts
and Skills

● Texture Wraps
● Camera as child object
● Global vs Local coordinates
● Get direction of other object

Next Lesson ● In the next lesson, we’ll add more challenge to the player, by creating
enemies that chase them in the game.

© Unity 2021 Create with Code - Unit 4

7

4.2 Follow the Player

Steps:
Step 1: Add an enemy and a physics material

Step 2: Create enemy script to follow player

Step 3: Create a lookDirection variable

Step 4: Create a Spawn Manager for the enemy

Step 5: Randomly generate spawn position

Step 6: Make a method return a spawn point

Example of project by end of lesson

Length: 60 minutes

Overview: The player can roll around to its heart’s content… but it has no purpose. In
this lesson, we fill that purpose by creating an enemy to challenge the player!
First we will give the enemy a texture of your choice, then give it the ability to
bounce the player away... potentially knocking them off the cliff. Lastly, we
will let the enemy chase the player around the island and spawn in random
positions.

Project
Outcome:

A textured and spherical enemy will spawn on the island at start, in a random
location determined by a custom function. It will chase the player around the
island, bouncing them off the edge if they get too close.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Apply Physics Materials to make game objects bouncy
- Normalize vectors to point the enemy in the direction of the player
- Randomly spawn with Random.Range on two axes
- Write more advanced custom functions and variables to make your code

clean and professional

© Unity 2021 Create with Code - Unit 4

8

Step 1: Add an enemy and a physics material
Our camera rotation and player movement are working like a charm. Next we’re going to set up
an enemy and give them them some special new physics to bounce the player away!
1. Create a new Sphere, rename it “Enemy” reposition

it, and drag a texture onto it
2. Add a new RigidBody component and adjust its

XYZ scale, then test
3. In a new “Physics Materials” folder, Create >

Physics Material, then name it “Bouncy”
4. Increase the Bounciness to “1”, change Bounce

Combine to “Multiply”, apply it to your player and
enemy, then test

- Don’t worry: If your game is lagging,
uncheck the “Active” checkbox for your
clouds

- New Concept: Physics Materials
- New Concept: Bounciness property

and Bounce Combine

© Unity 2021 Create with Code - Unit 4

9

Step 2: Create enemy script to follow player
The enemy has the power to bounce the player away, but only if the player approaches it. We
must tell the enemy to follow the player’s position, chasing them around the island.

1. Make a new “Enemy” script and attach it to the
Enemy

2. Declare 3 new variables for Rigidbody enemyRb;,
GameObject player;, and public float speed;

3. Initialize enemyRb = GetComponent Rigidbody>();
and player = GameObject.Find("Player");

4. In Update(), AddForce towards in the direction
between the Player and the Enemy

- Tip: Imagine we’re generating this new
vector by drawing an arrow from the
enemy to the player.

- Tip: We should start thinking ahead
and writing our variables in advance.
Think… what are you going to need?

- Tip: When normalized, a vector keeps
the same direction but its length is 1.0,
forcing the enemy to try and keep up

public float speed = 3.0f;
private Rigidbody enemyRb;
private GameObject player;

void Update() {
enemyRb.AddForce((player.transform.position
- transform.position).normalized * speed); }

Step 3: Create a lookDirection variable
The enemy is now rolling towards the player, but our code is a bit messy. Let’s clean up by
adding a variable for the new vector.

1. In Update(), declare a new Vector3 lookDirection variable
2. Set Vector3 lookDirection = (player.transform.position -

transform.position).normalized;
3. Implement the lookDirection variable in the AddForce call

- Tip: As always, adding
variables makes the code more
readable

void Update() {
Vector3 lookDirection = (player.transform.position
- transform.position).normalized;

enemyRb.AddForce(lookDirection (player.transform.position
- transform.position).normalized * speed); }

© Unity 2021 Create with Code - Unit 4

10

Step 4: Create a Spawn Manager for the enemy
Now that the enemy is acting exactly how we want, we’re going to turn it into a prefab so it can
be instantiated by a Spawn Manager.

1. Drag Enemy into the Prefabs folder to create a new Prefab,
then delete Enemy from scene

2. Create a new “Spawn Manager” object, attach a new
“SpawnManager” script, and open it

3. Declare a new public GameObject enemyPrefab variable then
assign the prefab in the inspector

4. In Start(), instantiate a new enemyPrefab at a predetermined
location

public GameObject enemyPrefab;

void Start()
{

Instantiate(enemyPrefab, new Vector3(0, 0, 6),
enemyPrefab.transform.rotation); }

Step 5: Randomly generate spawn position
The enemy spawns at start, but it always appears in the same spot. Using the familiar Random
class, we can spawn the enemy in a random position.

1. In SpawnManager.cs, in Start(), create new randomly
generated X and Z

2. Create a new Vector3 randomPos variable with those
random X and Z positions

3. Incorporate the new randomPos variable into the
Instantiate call

4. Replace the hard-coded values with a spawnRange
variable

5. Start and Restart your project to make sure it’s working

- Tip: Remember, we used
Random.Range all the way back
in Unit 2! Feel free to reference
old code.

public GameObject enemyPrefab;
private float spawnRange = 9;

void Start() {
float spawnPosX = Random.Range(-9, 9 -spawnRange, spawnRange);
float spawnPosZ = Random.Range(-9, 9 -spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, 0, spawnPosZ);
Instantiate(enemyPrefab, randomPos, enemyPrefab.transform.rotation); }

© Unity 2021 Create with Code - Unit 4

11

Step 6: Make a method return a spawn point
The code we use to generate a random spawn position is perfect, and we’re going to be using it
a lot. If we want to clean the script and use this code later down the road, we should store it in a
custom function.

1. Create a new function Vector3
GenerateSpawnPosition() { }

2. Copy and Paste the spawnPosX and spawnPosZ
variables into the new method

3. Add the line to return randomPos; in your new
method

4. Replace the code in your Instantiate call with your
new function name: GenerateSpawnPosition()

- Tip: This function will come in handy
later, once we randomize a spawn
position for the powerup

- New Concept: Functions that return a
value

- Tip: This function is different from
“void” calls, which do not return a
value. Look at “GetAxis” in
PlayerController for example - it returns
a float

void Start() {
Instantiate(enemyPrefab, GenerateSpawnPosition()
new Vector3(spawnPosX, 0, spawnPosZ), enemyPrefab.transform.rotation);
float spawnPosX = Random.Range(-spawnRange, spawnRange);
float spawnPosZ = Random.Range(-spawnRange, spawnRange); }

private Vector3 GenerateSpawnPosition () {
float spawnPosX = Random.Range(-spawnRange, spawnRange);
float spawnPosZ = Random.Range(-spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, 0, spawnPosZ);
return randomPos; }

Lesson Recap
New
Functionality

● Enemy spawns at random location on the island
● Enemy follows the player around
● Spheres bounce off of each other

New Concepts
and Skills

● Physics Materials
● Defining vectors in 3D space
● Normalizing values
● Methods with return values

Next Lesson ● In our next lesson, we’ll create ways to fight back against these enemies
using Powerups!

© Unity 2021 Create with Code - Unit 4

12

4.3 PowerUp and CountDown

Steps:
Step 1: Choose and prepare a powerup

Step 2: Destroy powerup on collision

Step 3: Test for collision with a powerup

Step 4: Apply extra knockback with powerup

Step 5: Create Countdown Routine for powerup

Step 6: Add a powerup indicator

Example of project by end of lesson

Length: 60 minutes

Overview: The enemy chases the player around the island, but the player needs a better
way to defend themselves... especially if we add more enemies. In this
lesson, we’re going to create a powerup that gives the player a temporary
strength boost, shoving away enemies that come into contact! The powerup
will spawn in a random position on the island, and highlight the player with
an indicator when it is picked up. The powerup indicator and the powerup
itself will be represented by stylish game assets of your choice.

Project
Outcome:

A powerup will spawn in a random position on the map. Once the player
collides with this powerup, the powerup will disappear and the player will be
highlighted by an indicator. The powerup will last for a certain number of
seconds after pickup, granting the player super strength that blasts away
enemies.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Write informative debug messages with Concatenation and variables
- Repeat functions with the power of IEnumerator and Coroutines
- Use SetActive to make game objects appear and disappear from the scene

© Unity 2021 Create with Code - Unit 4

13

Step 1: Choose and prepare a powerup
In order to add a completely new gameplay mechanic to this project, we will introduce a new
powerup object that will give the player temporary superpowers.
1. From the Library, drag a Powerup object into the scene,

rename it “Powerup” and edit its scale & position
2. Add a Box Collider to the powerup, click Edit Collider to

make sure it fits, then check the “Is Trigger” checkbox
3. Create a new “Powerup” tag and apply it to the powerup
4. Drag the Powerup into the Prefabs folder to create a new

“Original Prefab”

- Warning: Remember, you still
have to apply the tag after it
has been created.

Step 2: Destroy powerup on collision
As a first step to getting the powerup working, we’ll make it disappear when the player hits it
and set up a new boolean variable to track that the player got it.

1. In PlayerController.cs, add a new OnTriggerEnter()
method

2. Add an if-statement that destroys
other.CompareTag("Powerup") powerup on
collision

3. Create a new public bool hasPowerup; and set
hasPowerup = true; when you collide with the
Powerup

- Don’t worry: If this doesn’t work, make
sure that the Powerup’s collider “Is
trigger” and player’s collider is NOT

- Tip: Make sure hasPowerup = true in
the inspector when you collide

public bool hasPowerup

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup")) {

hasPowerup = true;
Destroy(other.gameObject); } }

© Unity 2021 Create with Code - Unit 4

14

Step 3: Test for enemy and powerup
The powerup will only come into play in a very particular circumstance: when the player has a
powerup AND they collide with an enemy - so we’ll first test for that very specific condition.

1. Create a new “Enemy” tag and apply it to the
Enemy Prefab

2. In PlayerController.cs, add the OnCollisionEnter()
function

3. Create the if-statement with the double-condition
testing for enemy tag and hasPowerup boolean

4. Create a Debug.Log to make sure it’s working

- Tip: OnTriggerEnter is good for stuff
like picking up powerups, but you
should use OnCollisionEnter when you
want something to do with physics

- New Concept: Concatenation in Debug
messages

- Tip: When you concatenate a variable
in a debug message, it will returns its
VALUE not its name

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {

Debug.Log("Collided with " + collision.gameObject.name
+ " with powerup set to " + hasPowerup);

}
}

Step 4: Apply extra knockback with powerup
With the condition for the powerup set up perfectly, we are now ready to program the actual
powerup ability: when the player collides with an enemy, the enemy should go flying!

1. In OnCollisionEnter() declare a new local variable
to get the Enemy’s Rigidbody component

2. Declare a new variable to get the direction away
from the player

3. Add an impulse force to the enemy, using a new
powerupStrength variable

- Tip: Reference the code in Enemy.cs
that makes the enemy follow the
player. In a way, we’re reversing that
code in order to push the enemy away.

- Don’t worry: No need to use
.Normalize, since they’re colliding

private float powerupStrength = 15.0f;

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {

Rigidbody enemyRigidbody = collision.gameObject.GetComponent<Rigidbody>();
Vector3 awayFromPlayer = (collision.gameObject.transform.position
- transform.position);

Debug.Log("Player collided with " + collision.gameObject
+ " with powerup set to " + hasPowerup);
enemyRigidbody.AddForce(awayFromPlayer * powerupStrength,
ForceMode.Impulse); } }

© Unity 2021 Create with Code - Unit 4

15

Step 5: Create Countdown Routine for powerup
It wouldn’t be fair to the enemies if the powerup lasted forever - so we’ll program a countdown
timer that starts when the player collects the powerup, removing the powerup ability when the
timer is finished.

1. Add a new IEnumerator
PowerupCountdownRoutine () {}

2. Inside the PowerupCountdownRoutine, wait 7
seconds, then disable the powerup

3. When player collides with powerup, start the
coroutine

- New Concept: IEnumerator
- New Concept: Coroutines
- Tip: WaitForSeconds()

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup")) {

hasPowerup = true;
Destroy(other.gameObject);
StartCoroutine(PowerupCountdownRoutine()); } }

IEnumerator PowerupCountdownRoutine() {
yield return new WaitForSeconds(7); hasPowerup = false; }

© Unity 2021 Create with Code - Unit 4

16

Step 6: Add a powerup indicator
To make this game a lot more playable, it should be clear when the player does or does not
have the powerup, so we’ll program a visual indicator to display this to the user.

1. From the Library, drag a Powerup object into the scene, rename it
“Powerup Indicator”, and edit its scale

2. Uncheck the “Active” checkbox in the inspector
3. In PlayerController.cs, declare a new public GameObject

powerupIndicator variable, then assign the Powerup Indicator
variable in the inspector

4. When the player collides with the powerup, set the indicator object
to Active, then set to Inactive when the powerup expires

5. In Update(), set the Indicator position to the player’s position + an
offset value

- New Function:
SetActive

- Tip: Make sure the
indicator is turning on
and off before making
it follow the player

public GameObject powerupIndicator

void Update() {
... powerupIndicator.transform.position = transform.position
+ new Vector3(0, -0.5f, 0); }

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup")) {

... powerupIndicator.gameObject.SetActive(true); } }

IEnumerator PowerupCountdownRoutine() {
... powerupIndicator.gameObject.SetActive(false); }

Lesson Recap
New
Functionality

● When the player collects a powerup, a visual indicator appears
● When the player collides with an enemy while they have the powerup, the

enemy goes flying
● After a certain amount of time, the powerup ability and indicator disappear

New Concepts
and Skills

● Debug concatenation
● Local component variables
● IEnumerators and WaitForSeconds()
● Coroutines
● SetActive(true/false)

Next Lesson ● We’ll start generating waves of enemies for our player to fend off!

© Unity 2021 Create with Code - Unit 4

17

4.4 For-Loops For Waves

Steps:
Step 1: Write a for-loop to spawn 3 enemies

Step 2: Give the for-loop a parameter

Step 3: Destroy enemies if they fall off

Step 4: Increase enemyCount with waves

Step 5: Spawn Powerups with new waves

Example of project by end of lesson

Length: 60 minutes

Overview: We have all the makings of a great game; A player that rolls around and
rotates the camera, a powerup that grants super strength, and an enemy that
chases the player until the bitter end. In this lesson we will wrap things up by
putting these pieces together!
First we will enhance the enemy spawn manager, allowing it to spawn
multiple enemies and increase their number every time a wave is defeated.
Lastly we will spawn the powerup with every wave, giving the player a chance
to fight back against the ever-increasing horde of enemies.

Project
Outcome:

The Spawn Manager will operate in waves, spawning multiple enemies and a
new powerup with each iteration. Every time the enemies drop to zero, a new
wave is spawned and the enemy count increases.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Repeat functions with For-loops
- Increment integer values in a loop with the ++ operator
- Target objects in a scene with FindObjectsOfType
- Return the length of an array as an integer with .Length

© Unity 2021 Create with Code - Unit 4

18

Step 1: Write a for-loop to spawn 3 enemies
We should challenge the player by spawning more than one enemy. In order to do so, we will
repeat enemy instantiation with a loop.
1. In SpawnManager.cs, in Start(), replace single

Instantiation with a for-loop that spawns 3
enemies

2. Move the for-loop to a new void
SpawnEnemyWave() function, then call that
function from Start()

- New Concept: For-loops
- Don’t worry: Loops are a bit confusing

at first, but they make sense
eventually. Loops are powerful tools
that programmers use often

- New Concept: ++ Increment Operator

void Start() {
SpawnEnemyWave();
for (int i = 0; i < 3; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

void SpawnEnemyWave() {
for (int i = 0; i < 3; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

Step 2: Give the for-loop a parameter
Right now, SpawnEnemyWave spawns exactly 3 enemies, but if we’re going to dynamically
increase the number of enemies that spawn during gameplay, we need to be able to pass
information to that method.

1. Add a parameter int enemiesToSpawn to the
SpawnEnemyWave function

2. Replace i < __ with i < enemiesToSpawn
3. Add this new variable to the function call in Start():

SpawnEnemyWave(___);

- New Concept: Custom methods with
parameters

- Tip: GenerateSpawnPosition returns a
value, SpawnEnemyWave does not.
SpawnEnemyWave takes a parameter,
GenerateSpawnPosition does not.

void Start() {
SpawnEnemyWave(3); }

void SpawnEnemyWave(int enemiesToSpawn) {
for (int i = 0; i < 3 enemiesToSpawn; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

© Unity 2021 Create with Code - Unit 4

19

Step 3: Destroy enemies if they fall off
Once the player gets rid of all the enemies, they’re left feeling a bit lonely. We need to destroy
enemies that fall, and spawn a new enemy wave once the last one is vanquished!

1. In Enemy.cs, destroy the enemies if their position
is less than a -Y value

2. In SpawnManager.cs, declare a new public int
enemyCount variable

3. In Update(), set enemyCount =
FindObjectsOfType<Enemy>().Length;

4. Write the if-statement that if enemyCount == 0
then SpawnEnemyWave

- New Function: FindObjectsOfType

void Update() {
... if (transform.position.y < -10) { Destroy(gameObject); } }

<------>
public int enemyCount

void Update() {
enemyCount = FindObjectsOfType<Enemy>().Length;
if (enemyCount == 0) { SpawnEnemyWave(1); } }

Step 4: Increase enemyCount with waves
Now that we control the amount of enemies that spawn, we should increase their number in
waves. Every time the player defeats a wave of enemies, more should rise to take their place.

1. Declare a new public int waveNumber = 1;, then
implement it in SpawnEnemyWave(waveNumber);

2. In the if-statement that tests if there are 0 enemies
left, increment waveNumber by 1

- Tip: Incrementing with the ++ operator
is very handy, you may find yourself
using it in the future

public int waveNumber = 1;

void Start() {
SpawnEnemyWave(3 waveNumber); }

void Update() {
enemyCount = FindObjectsOfType<Enemy>().Length;
if (enemyCount == 0) { waveNumber++; SpawnEnemyWave(1 waveNumber); } }

© Unity 2021 Create with Code - Unit 4

20

Step 5: Spawn Powerups with new waves
Our game is almost complete, but we’re missing something. Enemies continue to spawn with
every wave, but the powerup gets used once and disappears forever, leaving the player
vulnerable. We need to spawn the powerup in a random position with every wave, so the player
has a chance to fight back.

1. In SpawnManager.cs, declare a new public
GameObject powerupPrefab variable, assign the
prefab in the inspector and delete it from the
scene

2. In Start(), Instantiate a new Powerup
3. Before the SpawnEnemyWave() call, Instantiate a

new Powerup

- Tip: Now that we have a very playable
game, let’s test and tweak values

public GameObject powerupPrefab;

void Start() {
... Instantiate(powerupPrefab, GenerateSpawnPosition(),
powerupPrefab.transform.rotation); }

void Update() {
... if (enemyCount == 0) { ... Instantiate(powerupPrefab,

GenerateSpawnPosition(), powerupPrefab.transform.rotation); } }

Lesson Recap
New
Functionality

● Enemies spawn in waves
● The number of enemies spawned increases after every wave is defeated
● A new power up spawns with every wave

New Concepts
and Skills

● For-loops
● Increment (++) operator
● Custom methods with parameters
● FindObjectsOfType

© Unity 2021 Create with Code - Unit 4

21

Challenge 4
Soccer Scripting

Challenge
Overview:

Use the skills you learned in the Sumo Battle prototype in a completely
different context: the soccer field. Just like in the prototype, you will control a
ball by rotating the camera around it and applying a forward force, but instead
of knocking them off the edge, your goal is to knock them into the opposing
net while they try to get into your net. Just like in the Sumo Battle, after every
round a new wave will spawn with more enemy balls, putting your defense to
the test. However, almost nothing in this project is functioning! It’s your job to
get it working correctly.

Challenge
Outcome:

- Enemies move towards your net, but you can hit them to deflect them away
- Powerups apply a temporary strength boost, then disappear after 5 seconds
- When there are no more enemy balls, a new wave spawns with 1 more

enemy

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Defining Vectors by subtracting one location in 3D space from another
- Track the number of objects of a certain type in a scene to trigger certain

events
- Using Coroutines to perform actions based on a timed interval
- Using for-loops and dynamic variables to run code a particular number of

times
- Resolving errors related to null references of unassigned variables

Challenge
Instructions:

- Open your Prototype 4 project
- Download the "Challenge 4 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 4 > Instructions folder, use the

resources as a guide to complete this challenge

© Unity 2021 Create with Code - Unit 4

22

Challenge Task Hint

1 Hitting an enemy
sends it back towards
you

When you hit an enemy, it
should send it away from the
player

In PlayerControllerX.cs, to get a
Vector away from the player, you
should subtract the [enemy position]
minus the [player’s position] - not the
reverse

2 A new wave spawns
when the player gets a
powerup

A new wave should spawn
when all enemy balls have
been removed

In SpawnManagerX.cs, check that the
enemyCount variable is being set
correctly

3 The powerup never
goes away

The powerup should only last
for a certain duration, then
disappear

In PlayerControllerX.cs, the
PowerupCoolDown Coroutine code
looks good, but this coroutine is
never actually called with the
StartCoroutine() method

4 2 enemies are
spawned in every
wave

One enemy should be
spawned in wave 1, two in
wave 2, three in wave 3, etc

In SpawnManagerX.cs, the for-loop
that spawns enemy should make use
of the enemiesToSpawn parameter

5 The enemy balls are
not moving anywhere

The enemy balls should go
towards the “Player Goal”
object

There is an error in EnemyX.cs:
“NullReferenceException: Object
reference not set to an instance of an
object”. It looks like the playerGoal
object is never assigned.

Bonus Challenge Task Hint

X The player needs a
turbo boost

The player should get a
speed boost whenever the
player presses spacebar -
and a particle effect should
appear when they use it

In PlayerController, add a simple
if-statement that adds an “impulse”
force if spacebar is pressed. To add a
particle effect, first attach it as a child
object of the Focal Point.

Y The enemies never get
more difficult

The enemies’ speed should
increase in speed by a small
amount with every new wave

You’ll need to track and increase the
enemy speed in SpawnManagerX.cs.
Then in EnemyX.cs, reference that
speed variable and set it in Start().

© Unity 2021 Create with Code - Unit 4

23

Challenge Solution

1 In PlayerControllerX.cs, in OnCollisionEnter(), the awayFromPlayer Vector3 is in the opposite
direction it should be.

Vector3 awayFromPlayer = transform.position -

other.gameObject.transform.position;

= other.gameObject.transform.position -

transform.position;

2 In SpawnManagerX.cs, the enemyCount variable is counting the number of objects with a
“Powerup” tag - it should be counting the number of objects with an “Enemy” tag

void Update() {

enemyCount = GameObject.FindGameObjectsWithTag("Powerup Enemy").Length;

...

}

3 In PlayerControllerX.cs, in the OnTriggerEnter() method, you need to initiate the
PowerupCooldown Coroutine in order to begin the countdown process

private void OnTriggerEnter(Collider other) {

if (other.gameObject.CompareTag("Powerup")) {

...

StartCoroutine(PowerupCooldown());

}

}

4 In SpawnManagerX.cs, the for-loop that spawns enemy should make use of the
enemiesToSpawn parameter

for (int i = 0; i < 2 enemiesToSpawn; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(), ...

}

5 In EnemyX.cs, the playerGoal variable is not initialized - initialize it in the Start() method

void Start() {
enemyRb = GetComponent<Rigidbody>();
playerGoal = GameObject.Find("Player Goal");

;}

© Unity 2021 Create with Code - Unit 4

24

Bonus Challenge Solution

X1 To add a turbo boost, In PlayerControllerX.cs, declare a new turboBoost float variable, then in
Update(), add a simple if-statement that adds an “impulse” force in the direction of the focal
point if spacebar is pressed:

private float turboBoost = 10;

void Update() {

...

if (Input.GetKeyDown(KeyCode.Space)) {
playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);

}

}

X2 Add the Smoke_Particle prefab as a child object of the focal point (next to the camera), then in
PlayerControllerX.cs, declare a new turboSmoke particle variable and assign it in the inspector

X3 In PlayerControllerX.cs, in the if-statement checking if the player presses spacebar, play the
particle

if (Input.GetKeyDown(KeyCode.Space)) {

playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);

turboSmoke.Play();

}

Y1 In SpawnManagerX.cs, declare and initialize a new public enemySpeed variable, then increase
it by a certain amount every time a wave is spawned:

public int enemyCount;

public float enemySpeed = 50;

void SpawnEnemyWave(int enemiesToSpawn) {

...

waveCount++;

enemyCount += 25;

}

© Unity 2021 Create with Code - Unit 4

25

Y2 In EnemyX.cs, declare a new spawnManagerXScript variable, get a reference to it in Start(),
then set the enemy’s speed variable to your new enemySpeed variable

private GameObject playerGoal;

private SpawnManagerX spawnManagerXScript;

void Start() {

enemyRb = GetComponent<Rigidbody>();

playerGoal = GameObject.Find("Player Goal");

spawnManagerXScript = GameObject.Find("Spawn Manager").GetComponent<SpawnManagerX>();

speed = spawnManagerXScript.enemySpeed;

}

Y3 To test, make the speed variable in EnemyX.cs public and check the enemies’ speed when they
are spawned in different waves

© Unity 2021 Create with Code - Unit 4

26

Unit 4 Lab
Basic Gameplay
Steps:
Step 1: Give objects basic movement

Step 2: Destroy objects off-screen

Step 3: Handle object collisions

Step 4: Make objects into prefabs

Step 5: Make SpawnManager spawn Prefabs

Example of progress by end of lab

Length: 60 minutes

Overview: In this lab, you will work with all of your non-player objects in order to bring
your project to life with its basic gameplay. You will give your projectiles,
pickups, or enemies their basic movement and collision detection, make
them into prefabs, and have them spawned randomly by a spawn manager.
By the end of this lab, you should have a glimpse into the core functionality
of your game.

Project
Outcome:

Non-player objects are spawned at appropriate locations in the scene with
basic movement. When objects collide with each other, they react as
intended, by either bouncing or being destroyed.

Learning
Objectives:

By the end of this lab, you will be able to:
- More comfortably program basic movement
- More comfortably handle object collisions
- More comfortably spawn object prefabs on timed intervals

© Unity 2021 Create with Code - Unit 4

27

Step 1: Give objects basic movement
Before you spawn objects into your scene, they should move the way you want.

1. If relevant, add Rigidbody components to your
non-player objects

2. Create a new script(s) for the objects that will be
instantiated during gameplay and attach them to
their respective objects (including projectiles or
pickups)

3. Program the basic movement for your objects and
test that they work

- Tip: Make sure you uncheck “use
gravity” if you don’t want them to fall

- Tip: In the collider component, check
“is trigger” if you don’t want actual
collisions

By the end of this step, all objects should basically move the way they should in the game.

Step 2: Destroy objects off-screen
To make sure our hierarchy doesn’t get too cluttered, let’s make sure these objects get
destroyed when they leave the screen.
1. Either create a new script or add code to your

existing script to make sure objects are destroyed
when they leave the screen

- Tip: Move your objects in scene view
to determine the xyz positions objects
should be destroyed

By the end of this step, objects should be removed from the hierarchy when they are no longer in
play.

Step 3: Handle object collisions
Now that you have all these moving objects, they’re bound to start colliding with each other - we
need to program what should happen when everything collides.
1. If relevant, edit the Rigidbody mass of your objects
2. If relevant, to change the way your objects collide,

create a new Physics material for your objects
3. Add tags to your objects so you can accurately test

for which objects are colliding with which
4. Use OnCollisionEnter() (for Rigidbody collisions) or

OnTriggerEnter() (for trigger-based collisions) to
Destroy or Log messages to the console what
should happen when certain collisions occur

- Don’t worry: If you collide with a
powerup or pickup, the actual
functionality does not need to be
programmed, just the effect

- Tip: Should use OnTriggerEnter if
objects are being destroyed - but
remember that “Is Trigger” must be
checked for this to work!

By the end of this step, objects should destroy, bounce, or do nothing based on collisions.

© Unity 2021 Create with Code - Unit 4

28

Step 4: Make objects into prefabs
Now that the objects are basically behaving the way they should, if they’re going to be
instantiated during gameplay, they need to be prefabs

1. In the Assets directory, create a new Folder called
“Prefabs”

2. Drag in each object to create a new prefab for it
3. After all objects have been turned into prefabs, delete

them from the scene
4. Test the objects’ behavior by dragging them from the

Prefabs folder into the scene while the game is running

- Tip: When creating new prefabs,
you have to drag them one at a
time

- Tip: Notice that their icons turn
blue when they are prefabs

By the end of this step, all objects that will be spawned during gameplay should be prefabs and
should no longer be in your scene.

Step 5: Make SpawnManager spawn Prefabs
Now that we have all of our prefabs set up, we can create a spawn manager to spawn them at
intervals and, if we want, in random locations.

1. Create an Empty “Spawn Manager” object and attach a
new SpawnManager.cs script to it

2. Create individual GameObject or GameObject array
variables for your prefabs, then assign them in the
inspector

3. Use the Instantiate(), Random.Range(), and the
InvokeRepeating() methods to spawn objects at
intervals (random objects, random locations, or both)

4. Right-click on your Assets folder > Export Package then
save a new version in your Backups folder

- Tip: Name your variables
“____Prefab” so you know it
requires a prefab value

- Don’t worry: If it’s not perfect yet
of if there are some minor bugs -
just get the general idea working

By the end of this step, objects should be spawned automatically from the appropriate location.

© Unity 2021 Create with Code - Unit 4

29

Lesson Recap
New Progress ● Non-player objects prefabs have basic movement

● Objects are destroyed when they leave the screen
● Collisions between objects are handled appropriately
● Objects are spawned at the appropriate locations on time-based intervals

New Concepts
and Skills

● Creating basic gameplay for a project independently

© Unity 2021 Create with Code - Unit 4

30

Quiz Unit 4
QUESTION CHOICES

1 You’re trying to write some code that creates a random
age between 1 and 100 and prints that age, but there is
an error. What would fix the error?

a. Change line 1 to “private float
age”

b. Add the word “int” to line 8, so
it says “int age = …”

c. On line 7, change the word
“private” to “void”

d. Add a new line after line 8 that
says “return age;”

1. private int age;

2.

3. void Start() {

4. Debug.Log(GenerateRandomAge());

5. }

6.

7. private int GenerateRandomAge() {

8. age = Random.Range(1, 101);

9. }

2 The following message was displayed in the console:
“Monica has 20 dollars”. Which of the line options in the
PrintNames function produced it?

a. Option A
b. Option B
c. Option C
d. Option D

string[] names = new string[] { "Steve", "Monica", "Eric" };

int money = 5;

void Start() {

money *= 2;

PrintNames();

}

void PrintNames () {

A. Debug.Log("Monica has " + money/2 + " dollars");

B. Debug.Log(names[1] + " has " + money*2 + " dollars");

C. Debug.Log(names[2] + " has " + money*2 + " dollars");

D. Debug.Log(names[Monica] + " has " + money/2 + " dollars");

}

© Unity 2021 Create with Code - Unit 4

31

3 The code below produces “error CS0029: Cannot
implicitly convert type 'float' to 'UnityEngine.Vector3'”.
Which of the following would remove the error?

a. On line 1, change “Vector3” to
“float”

b. On line 3, change “=” to “+”
c. Either A or B
d. None of the above1. private Vector3 startingVelocity;

2. void Start() {

3. startingVelocity = 2.0f;

4. }

4 Which of the following follows Unity’s naming
conventions (especially as it relates to capitalization)?

a. Line A
b. Line B
c. Line C
d. Line DA. float forwardInput = Input.GetAxis("Vertical");

B. float ForwardInput = input.GetAxis("Vertical");

C. Float forwardInput = Input.getAxis("Vertical");

D. float forwardInput = input.getAxis("vertical");

5 You are trying to assign the powerup variable in the
inspector, but it is not showing up in the Player
Controller component. What is the problem?

a. You cannot declare a powerup
variable in the Player Controller
Script

b. You cannot assign GameObject
type variables in the inspector

c. The powerup variable should
be public instead of private

d. The PlayerController class
should be private instead of
public

public class PlayerController : MonoBehaviour

{

private GameObject powerup;

}

6 Your game has just started and you see the error,
“UnassignedReferenceException: The variable
playerIndicator of PlayerController has not been
assigned.” What is likely the solution to the problem?

a. PlayerController variable in the
playerIndicator script needs to
be declared

b. The playerIndicator variable
needs to be made private

c. The PlayerController script
must be assigned to the player
object

d. An object needs to be dragged
onto the playerIndicator
variable in the inspector

public class PlayerController : MonoBehaviour

{

public GameObject playerIndicator;

void Update() {

playerIndicator.transform.position.y = 10;

}

}

© Unity 2021 Create with Code - Unit 4

32

7 You are trying to create a new method that takes a
number and multiplies it by two. Which method would do
that?

a. Method A
b. Method B
c. Method C
d. Method D

A. private float DoubleNumber() {

return number *= 2;

}

B. private float DoubleNumber(float number) {

return number *= 2;

}

C. private void DoubleNumber(float number) {

return number *= 2;

}

D. private void DoubleNumber() {

return number *= 2;

}

8 Which comment best describes the code below? a. // If the player collides with an
enemy, destroy the enemy

b. // If the enemy collides with a
spike, destroy the spike

c. // If the enemy collides with a
spike, destroy the enemy

d. // If the player collides with a
spike, destroy the spike

public class Enemy : MonoBehaviour

{

// Comment

private void OnTriggerEnter(Collider other) {

if(other.CompareTag("Spike")) {

Destroy(other.gameObject);

}

}

}

9 The code below produces the error, “error CS0029:
Cannot implicitly convert type 'UnityEngine.GameObject'
to 'UnityEngine.Rigidbody'”. What could be done to fix
this issue?

a. On line 1, change “collision” to
“Rigidbody”

b. On line 2, change “gameObject”
to “Rigidbody”

c. On line 3, delete “.gameObject”
d. On line 3, add

“.GetComponent<Rigidbody>()”
before the semicolon

1. void OnCollisionEnter(Collision collision) {

2. if(collision.gameObject.CompareTag("Enemy")) {

3. Rigidbody enemyRb = collision.gameObject;

4. }

5. }

© Unity 2021 Create with Code - Unit 4

33

10 Which of the following statements about
functions/methods are correct:

a. A and B are correct
b. Only B is correct
c. B and C are correct
d. Only D is correct
e. None are correct

A. Functions/methods must be passed at least one parameter
B. Functions/methods with a “void” return type cannot be

passed parameters
C. A Function/method with an “int” return type could include

the code, “return 0.5f;”
D. If there was a function/method declared as “private void

RenameObject(string newName)”, you could call that
method with “RenameObject();”

© Unity 2021 Create with Code - Unit 4

34

Quiz Answer Key
ANSWER EXPLANATION

1 D Since the method has an “int” return type “private int GenerateRandomAge()”,
it must return an int.

2 B Debug.Log(names[1] + " has " + money*2 + " dollars"); is correct.
Arrays start with index 0, so “Monica” has the index value of “1” (names[1]).
In start, money is multiplied by 2, making it 10, so “money*2” would give you
the value of 20.

3 A Changing “Vector3” to “float” would work because you would just be
multiplying a flat by another float. Changing “=” to “+” would not work
because you can’t add a float to a Vector3.

4 A Lowercase “float”, camelCase variables, Capitalized class & method names

5 C Making a variable public will make it appear in the inspector.

6 D If the consoles says a variable is not assigned, you most likely forgot to
assign that variable by dragging on object onto it in the inspector.

7 B Since it needs to “return” a value, it should have a return type of “private float”
as opposed to “private void.” Since it needs to take a number, it needs a float
parameter (“float number”).

8 B Since this is the “Enemy” class, we are testing for the enemy colliding with
something. Since it destroys “other.gameObject”, it will destroy the spike.

9 D The code cannot convert a RigidBody type variable to a GameObject type
variable, so you have to get the RigidBody component from the gameObject

10 E A. Functions/methods do not necessarily require parameters
B. Functions/methods with a “void” return type can be passed

parameters
C. A Function/method with an “int” return type could not include the

code, “return 0.5f;”, since 0.5f is a float
D. If there was a function/method declared as “private void

RenameObject(string newName)”, you would have to pass it a string
parameter, such as RenameObject(“Steve”);

© Unity 2021 Create with Code - Unit 4

35

Bonus Features 4 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 4

36

Step 1: Overview
This tutorial outlines four potential bonus features for the Sumo Battle Prototype at varying levels of
difficulty:

● Easy: Harder enemy
● Medium: Homing rockets
● Hard: Smashingly good
● Expert: Boss battle

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 4

37

Step 2: Easy: Harder enemy
Add a new more difficult type of enemy and randomly select which is spawned.

Step 3: Medium: Homing rockets
Create a new powerup that gives the player the ability to launch projectiles at enemies to knock
them off (or something that automatically fires projectiles in all directions when the powerup is
enabled).

© Unity 2021 Create with Code - Unit 4

38

Step 5: Hard: Smash attack
Create a new powerup that allows the player to hop up into the air and smash down onto the
ground, sending any enemies nearby flying away from the player. Ideally, the closer an enemy is,
the more it should be impacted by the smash.

Step 6: Expert: Boss battle
After a certain number of waves, program a mini “boss battle,” where the boss has some
completely new abilities. For example, maybe the boss can fire projectiles at you, maybe it is
extremely agile, or maybe it occasionally generates little minions that come after you.

© Unity 2021 Create with Code - Unit 4

39

Step 7: Hints and solution walkthrough
Hints:

● Easy: Harder enemy
○ Try using an array for the enemy prefabs.

● Medium: Homing rockets
○ Try using an enum to differentiate the power ups

● Hard: Smashingly good
○ Extend the enum you created in the previous challenge

● Expert: Boss battle
○ Create a new SpawnBossWave function that only runs if the wave number is a

multiple of a particular value.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 4

https://connect-prd-cdn.unity.com/20210505/9502c2c1-7535-48dd-ba2d-5ed8cab90107/Unit%204%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.233637726.1186801097.1620052249-59568313.1601905412

1

Create with Code
Unit 5 Lesson Plans

© Unity 2021 Create with Code - Unit 5

2

5.1 Clicky Mouse

Steps:
Step 1: Create project and switch to 2D view

Step 2: Create good and bad targets

Step 3: Toss objects randomly in the air

Step 4: Replace messy code with new methods

Step 5: Create object list in Game Manager

Step 6: Create a coroutine to spawn objects

Step 7: Destroy target with click and sensor

Example of project by end of lesson

Length: 60 minutes

Overview: It’s time for the final unit! We will start off by creating a new project and
importing the starter files, then switching the game’s view to 2D. Next we will
make a list of target objects for the player to click on: Three “good” objects
and one “bad”. The targets will launch spinning into the air after spawning at
a random position at the bottom of the map. Lastly, we will allow the player
to destroy them with a click!

Project
Outcome:

A list of three good target objects and one bad target object will spawn in a
random position at the bottom of the screen, thrusting themselves into the
air with random force and torque. These targets will be destroyed when the
player clicks on them or they fall out of bounds.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Switch the game to 2D view for a different perspective
- Add torque to the force of an object
- Create a Game Manager object that controls game states as well as

spawning
- Create a List of objects and return their length with Count
- Use While Loops to repeat code while something is true
- Use OnMouseDown to enable the player to click on things

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1HwgdyXB3pYrdhD9Vcscy--fVhpSHGjNhD7Bc2hhPMXs/edit#heading=h.t9imqyt6oys1
https://docs.google.com/document/d/1HwgdyXB3pYrdhD9Vcscy--fVhpSHGjNhD7Bc2hhPMXs/edit#heading=h.gwojefu70x76

3

Step 1: Create project and switch to 2D view
One last time… we need to create a new project and download the starter files to get things up
and running.
1. Open Unity Hub and create an empty “Prototype 5”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 5 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 5 scene, then delete the
sample scene without saving

4. Click on the 2D icon in Scene view to put Scene
view in 2D

5. (optional) Change the texture and color of the
background and the color of the borders

- New Concept: 2D View
- Demo: Notice in 2D view: You can’t

rotate around objects or move them in
the Z direction

© Unity 2021 Create with Code - Unit 5

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/c7c2c2ce-f2f4-492e-819c-58096e11ab9f/Prototype%205%20-%20Starter%20Files.zip?_ga=2.33909089.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

Step 2: Create good and bad targets
The first thing we need in our game are three good objects to collect, and one bad object to
avoid. It’ll be up to you to decide what’s good and what’s bad.

1. From the Library, drag 3 “good” objects and 1 “bad”
object into the Scene, rename them “Good 1”, “Good 2”,
“Good 3”, and “Bad 1”

2. Add Rigid Body and Box Collider components, then make
sure that Colliders surround objects properly

3. Create a new Scripts folder, a new “Target.cs” script
inside it, attach it to the Target objects

4. Drag all 4 targets into the Prefabs folder to create
“original prefabs”, then delete them from the scene

- Tip: The bigger the collider
boxes, the easier it will be to hit
them

- Tip: Try selecting multiple
objects and applying
scripts/components - very
handy

Step 3: Toss objects randomly in the air
Now that we have 4 target prefabs with the same script, we need to toss them into the air with a
random force, torque, and position.

1. In Target.cs, declare a new private Rigidbody
targetRb; and initialize it in Start()

2. In Start(), add an upward force multiplied by a
randomized speed

3. Add a torque with randomized xyz values
4. Set the position with a randomized X value

- New Function: AddTorque
- Tip: Test with different values by

dragging them in during runtime
- Don’t worry: We’re going to fix all these

hard-coded values next

private Rigidbody targetRb;

void Start() {
targetRb = GetComponent<Rigidbody>();
targetRb.AddForce(Vector3.up * Random.Range(12, 16), ForceMode.Impulse);
targetRb.AddTorque(Random.Range(-10, 10), Random.Range(-10, 10),
Random.Range(-10, 10), ForceMode.Impulse);
transform.position = new Vector3(Random.Range(-4, 4), -6); }

© Unity 2021 Create with Code - Unit 5

5

Step 4: Replace messy code with new methods
Instead of leaving the random force, torque, and position making our Start() function messy and
unreadable, we’re going to store each of them in brand new clearly named custom methods.

1. Declare and initialize new private float variables for minSpeed,
maxSpeed, maxTorque, xRange, and ySpawnPos;

2. Create a new function for Vector3 RandomForce() and call it in Start()
3. Create a new function for float RandomTorque() and call it in Start()
4. Create a new function for RandomSpawnPos(), have it return a new

Vector3 and call it in Start()

private float minSpeed = 12;
private float maxSpeed = 16;
private float maxTorque = 10;
private float xRange = 4;
private float ySpawnPos = -6;

void Start() {
...
targetRb.AddForce(... RandomForce(), ForceMode.Impulse);
targetRb.AddTorque(... RandomTorque(), RandomTorque(), RandomTorque(),

ForceMode.Impulse);
transform.position = ... RandomSpawnPos();

}

Vector3 RandomForce() {
return Vector3.up * Random.Range(minSpeed, maxSpeed);

}
float RandomTorque() {

return Random.Range(-maxTorque, maxTorque);
}
Vector3 RandomSpawnPos() {

return new Vector3(Random.Range(-xRange, xRange), ySpawnPos);
}

© Unity 2021 Create with Code - Unit 5

6

Step 5: Create object list in Game Manager
The next thing we should do is create a list for these objects to spawn from. Instead of making
a Spawn Manager for these spawn functions, we’re going to make a Game Manager that will
also control game states later on.

1. Create a new “Game Manager” Empty object,
attach a new GameManager.cs script, then open it

2. Declare a new public List<GameObject> targets;,
then in the Game Manager inspector, change the
list Size to 4 and assign your prefabs

- New Concept: Lists
- New Concept: Game Manager
- Demo: Feel free to reference old code:

We used an array instead of a list to
spawn the animals in Unit 2

Step 6: Create a coroutine to spawn objects
Now that we have a list of object prefabs, we should instantiate them in the game using
coroutines and a new type of loop.

1. Declare and initialize a new private float spawnRate
variable

2. Create a new IEnumerator SpawnTarget () method
3. Inside the new method, while(true), wait 1 second,

generate a random index, and spawn a random target
4. In Start(), use the StartCoroutine method to begin

spawning objects

- Tip: Feel free to reference old code:
we used coroutines for the
powerup cooldown in Unit 4

- Tip: Arrays return an integer with
.Length, while Lists return an
integer with .Count

- New Concept: While Loops

private float spawnRate = 1.0f;

void Start() { StartCoroutine(SpawnTarget()); }

IEnumerator SpawnTarget() {
while (true) {

yield return new WaitForSeconds(spawnRate);
int index = Random.Range(0, targets.Count);
Instantiate(targets[index]); } }

© Unity 2021 Create with Code - Unit 5

7

Step 7: Destroy target with click and sensor
Now that our targets are spawning and getting tossed into the air, we need a way for the player
to destroy them with a click. We also need to destroy any targets that fall below the screen.

1. In Target.cs, add a new method for private void
OnMouseDown() { } , and inside that method,
destroy the gameObject

2. Add a new method for private void
OnTriggerEnter(Collider other) and inside that
function, destroy the gameObject

- New Function: OnMouseDown
- Tip: There is also OnMouseUp, and

OnMouseEnter, but Down is definitely
the one we want

- Tip: You could use Update and check if
target y position is lower than a certain
value, but a sensor is better because it
doesn't run all the time

private void OnMouseDown() {
Destroy(gameObject); }

private void OnTriggerEnter(Collider other) {
Destroy(gameObject); }

Lesson Recap
New
Functionality

● Random objects are tossed into the air on intervals
● Objects are given random speed, position, and torque
● If you click on an object, it is destroyed

New Concepts
and Skills

● 2D View
● AddTorque
● Game Manager
● Lists
● While Loops
● Mouse Events

Next Lesson ● We’ll add some effects and keep track of score!

© Unity 2021 Create with Code - Unit 5

8

5.2 Keeping Score

Steps:
Step 1: Add Score text position it on screen

Step 2: Edit the Score Text’s properties

Step 3: Initialize score text and variable

Step 4: Create a new UpdateScore method

Step 5: Add score when targets are destroyed

Step 6: Assign a point value to each target

Step 7: Add a Particle explosion

Example of project by end of lesson

Length: 60 minutes

Overview: Objects fly into the scene and the player can click to destroy them, but
nothing happens. In this lesson, we will display a score in the user interface
that tracks and displays the player’s points. We will give each target object a
different point value, adding or subtracting points on click. Lastly, we will add
cool explosions when each target is destroyed.

Project
Outcome:

A “Score: “ section will display in the UI, starting at zero. When the player
clicks a target, the score will update and particles will explode as the target
is destroyed. Each “Good” target adds a different point value to the score,
while the “Bad” target subtracts from the score.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create UI Elements in the Canvas
- Lock elements and objects into place with Anchors
- Use variables and script communication to update elements in the UI

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1NEzZB8uVjvU-m1LICTPvltqaXiHIYTicPj7ct2cqiVo/edit#heading=h.t9imqyt6oys1

9

Step 1: Add Score text position it on screen
In order to display the score on-screen, we need to add our very first UI element.
1. In the Hierarchy, Create > UI > TextMeshPro text,

then if prompted click the button to Import TMP
Essentials

2. Rename the new object “Score Text”, then zoom
out to see the canvas in Scene view

3. Change the Anchor Point so that it is anchored
from the top-left corner

4. In the inspector, change its Pos X and Pos Y so
that it is in the top-left corner

- New Concept: Text Mesh Pro / TMPro
- New Concept: Canvas
- New Concept: Anchor Points
- Tip: Look at how it displays in scene

vs game view. It may be hard to see
white text depending on the
background

Step 2: Edit the Score Text’s properties
Now that the basic text is in the scene and positioned properly, we should edit its properties so
that it looks nice and has the correct text.

1. Change its text to “Score:”
2. Choose a Font Asset, Style, Size, and Vertex color

to look good with your background

© Unity 2021 Create with Code - Unit 5

10

Step 3: Initialize score text and variable
We have a great place to display score in the UI, but nothing is displaying there! We need the UI
to display a score variable, so the player can keep track of their points.

1. At the top of GameManager.cs, add “using TMPro;”
2. Declare a new public TextMeshProUGUI scoreText, then assign that

variable in the inspector
3. Create a new private int score variable and initialize it in Start() as

score = 0;
4. Also in Start(), set scoreText.text = "Score: " + score;

- New Concept:
Importing Libraries

using TMPro;

private int score;
public TextMeshProUGUI scoreText;

void Start() {
StartCoroutine(SpawnTarget());
score = 0;
scoreText.text = "Score: " + score; }

Step 4: Create a new UpdateScore method
The score text displays the score variable perfectly, but it never gets updated. We need to write
a new function that racks up points to display in the UI.

1. Create a new private void UpdateScore method that requires
one int scoreToAdd parameter

2. Cut and paste scoreText.text = "Score: " + score; into the new
method, then call UpdateScore(0) in Start()

3. In UpdateScore(), increment the score by adding
score += scoreToAdd;

4. Call UpdateScore(5) in the spawnTarget() function

- New Concept: Custom
functions requiring
parameters

- Don’t worry: It doesn’t
make sense to add to
score when spawned, this
is just temporary

void Start() {
...scoreText.text = "Score: " + score;
UpdateScore(0); }

IEnumerator SpawnTarget() {
while (true) { ... UpdateScore(5); }

private void UpdateScore(int scoreToAdd) {
score += scoreToAdd;
scoreText.text = "Score: " + score; }

© Unity 2021 Create with Code - Unit 5

11

Step 5: Add score when targets are destroyed
Now that we have a method to update the score, we should call it in the target script whenever
a target is destroyed.

1. In GameManager.cs, make the UpdateScore method public
2. In Target.cs, create a reference to private GameManager

gameManager;
3. Initialize GameManager in Start() using the Find() method
4. When a target is destroyed, call UpdateScore(5);, then

delete the method call from SpawnTarget()

- Tip: Feel free to reference old
code: We used script
communication in Unit 3 to
stop the game on GameOver

- Warning: If you try to call
UpdateScore while it’s private,
it won’t work

GameManager.cs
IEnumerator SpawnTarget() {

while (true) { ... UpdateScore(5); }

private public void UpdateScore(int scoreToAdd) { ... }

Target.cs
private GameManager gameManager;

void Start() {
... gameManager = GameObject.Find("Game Manager")

.GetComponent<GameManager>();}

private void OnMouseDown() {
... gameManager.UpdateScore(5); }

Step 6: Assign a point value to each target
The score gets updated when targets are clicked, but we want to give each of the targets a
different value. The good objects should vary in point value, and the bad object should subtract
points.

1. In Target.cs, create a new public int pointValue variable
2. In each of the Target prefab’s inspectors, set the Point

Value to whatever they’re worth, including the bad
target’s negative value

3. Add the new variable to UpdateScore(pointValue);

- Tip: Here’s the beauty of variables
at work. Each target $ can
have their own unique pointValue!

public int pointValue;

private void OnMouseDown() {
Destroy(gameObject);
gameManager.UpdateScore(5 pointValue); }

© Unity 2021 Create with Code - Unit 5

12

Step 7: Add a Particle explosion
The score is totally functional, but clicking targets is sort of… unsatisfying. To spice things up,
let’s add some explosive particles whenever a target gets clicked!

1. In Target.cs, add a new public ParticleSystem explosionParticle
variable

2. For each of your target prefabs, assign a particle prefab from
Course Library > Particles to the Explosion Particle variable

3. In the OnMouseDown() function, instantiate a new explosion
prefab

public ParticleSystem explosionParticle;

private void OnMouseDown() {
Destroy(gameObject);
Instantiate(explosionParticle, transform.position,
explosionParticle.transform.rotation);
gameManager.UpdateScore(pointValue); }

Lesson Recap
New
Functionality

● There is a UI element for score on the screen
● The player’s score is tracked and displayed by the score text when hit a

target
● There are particle explosions when the player gets an object

New Concepts
and Skills

● TextMeshPro
● Canvas
● Anchor Points
● Import Libraries
● Custom methods with parameters
● Calling methods from other scripts

Next Lesson ● We’ll use some UI elements again - this time to tell the player the game is
over and reset our game!

© Unity 2021 Create with Code - Unit 5

13

5.3 Game Over

Steps:
Step 1: Create a Game Over text object

Step 2: Make GameOver text appear

Step 3: Create GameOver function

Step 4: Stop spawning and score on GameOver

Step 5: Add a Restart button

Step 6: Make the restart button work

Step 7: Show restart button on game over

Example of project by end of lesson

Length: 60 minutes

Overview: We added a great score counter to the game, but there are plenty of other
game-changing UI elements that we could add. In this lesson, we will create
some “Game Over” text that displays when a “good” target object drops
below the sensor. During game over, targets will cease to spawn and the
score will be reset. Lastly, we will add a “Restart Game” button that allows
the player to restart the game after they have lost.

Project
Outcome:

When a “good” target drops below the sensor at the bottom of the screen, the
targets will stop spawning and a “Game Over” message will display across
the screen. Just underneath the “Game Over” message will be a “Reset
Game” button that reboots the game and resets the score, so the player can
enjoy it all over again.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Make UI elements appear and disappear with .SetActive
- Use Script Communication and Game states to have a working “Game

Over” screen
- Restart the game using a UI button and Scene Management

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1NgrfvVuD6BbmiY3VF9oNfvPNatNJMZqi-iI4UUe5F3w/edit#heading=h.4uqbkjeyz8n7

14

Step 1: Create a Game Over text object
If we want some “Game Over” text to appear when the game ends, the first thing we’ll do is
create and customize a new UI text element that says “Game Over”.
1. Right-click on the Canvas, create a new UI >

TextMeshPro - Text object, and rename it “Game
Over Text”

2. In the inspector, edit its Text, Pos X, Pos Y, Font
Asset, Size, Style, Color, and Alignment

3. Set the “Wrapping” setting to “Disabled”

- Tip: The center of the screen is the
best place for this Game Over
message - it grabs the player’s
attention

Step 2: Make GameOver text appear
We’ve got some beautiful Game Over text on the screen, but it’s just sitting and blocking our
view right now. We should deactivate it, so it can reappear when the game ends.

1. In GameManager.cs, create a new public
TextMeshProUGUI gameOverText; and assign the
Game Over object to it in the inspector

2. Uncheck the Active checkbox to deactivate the
Game Over text by default

3. In Start(), activate the Game Over text

- Don’t worry: We’re just doing this
temporarily to make sure it works

public TextMeshProUGUI gameOverText;

void Start() {
...
gameOverText.gameObject.SetActive(true); }

© Unity 2021 Create with Code - Unit 5

15

Step 3: Create GameOver function
We’ve temporarily made the “Game Over” text appear at the start of the game, but we actually
want to trigger it when one of the “Good” objects is missed and falls.

1. Create a new public void GameOver() function, and move the code
that activates the game over text inside it

2. In Target.cs, call gameManager.GameOver() if a target collides
with the sensor

3. Add a new “Bad” tag to the Bad object, add a condition that will
only trigger game over if it’s not a bad object

void Start() {
... gameOverText.gameObject.SetActive(true); }

public void GameOver() {
gameOverText.gameObject.SetActive(true); }

<------>
private void OnTriggerEnter(Collider other) {

Destroy(gameObject);
if (!gameObject.CompareTag("Bad")) { gameManager.GameOver(); } }

Step 4: Stop spawning and score on GameOver
The “Game Over” message appears exactly when we want it to, but the game itself continues to
play. In order to truly halt the game and call this a “Game Over’, we need to stop spawning
targets and stop generating score for the player.

1. Create a new public bool isGameActive;
2. As the first line In Start(), set isGameActive = true; and in

GameOver(), set isGameActive = false;
3. To prevent spawning, in the SpawnTarget() coroutine, change

while (true) to while (isGameActive)
4. To prevent scoring, in Target.cs, in the OnMouseDown()

function, add the condition if (gameManager.isGameActive) {

public bool isGameActive;

void Start() { ... isGameActive = true; }

public void GameOver() { ... isGameActive = false; }

IEnumerator SpawnTarget() { while (true isGameActive) { ... }
<------>
private void OnMouseDown() {

if (gameManager.isGameActive) { ... [all function code moved inside] }}

© Unity 2021 Create with Code - Unit 5

16

Step 5: Add a Restart button
Our Game Over mechanics are working like a charm, but there’s no way to replay the game. In
order to let the player restart the game, we will create our first UI button

1. Right-click on the Canvas and Create > UI > Button
Note: You could also use Button - TextMeshPro for more control
over the button’s text.

2. Rename the button “Restart Button”
3. Temporarily reactivate the Game Over text in order to reposition the

Restart Button nicely with the text, then deactivate it again
4. Select the Text child object, then edit its Text to say “Restart”, its

Font, Style, and Size

- New Concept:
Buttons

Step 6: Make the restart button work
We’ve added the Restart button to the scene and it LOOKS good, but now we need to make it
actually work and restart the game.

1. In GameManager.cs, add using
UnityEngine.SceneManagement;

2. Create a new public void RestartGame() function
that reloads the current scene

3. In the Button’s inspector, click + to add a new On
Click event, drag it in the Game Manager object
and select the GameManager.RestartGame
function

- New Concept: Scene Management
- New Concept: On Click Event
- Don’t worry: The restart button is just

sitting there for now, but we will fix it
later

using UnityEngine.SceneManagement;

public void RestartGame() {
SceneManager.LoadScene(SceneManager.GetActiveScene().name); }

© Unity 2021 Create with Code - Unit 5

17

Step 7: Show restart button on game over
The Restart Button looks great, but we don’t want it in our faces throughout the entire game.
Similar to the “Game Over” message, we will turn off the Restart Button while the game is
active.

1. At the top of GameManager.cs add using UnityEngine.UI;
2. Declare a new public Button restartButton; and assign the

Restart Button to it in the inspector
3. Uncheck the “Active” checkbox for the Restart Button in

the inspector
4. In the GameOver function, activate the Restart Button

- Tip: Adding “using
UnityEngine.UI” allows you to
access the Button class

using UnityEngine.UI;

public Button restartButton;

public void GameOver() { ...
restartButton.gameObject.SetActive(true); }

Lesson Recap
New
Functionality

● A functional Game Over screen with a Restart button
● When the Restart button is clicked, the game resets

New Concepts
and Skills

● Game states
● Buttons
● On Click events
● Scene management Library
● UI Library
● Booleans to control game states

Next Lesson ● In our next lesson, we’ll use buttons to really add some difficulty to our
game

© Unity 2021 Create with Code - Unit 5

18

5.4 What’s the Difficulty?

Steps:
Step 1: Create Title text and menu buttons

Step 2: Add a DifficultyButton script

Step 3: Call SetDifficulty on button click

Step 4: Make your buttons start the game

Step 5: Deactivate Title Screen on StartGame

Step 6: Use a parameter to change difficulty

Example of project by end of lesson

Length: 60 minutes

Overview: It’s time for the final lesson! To finish our game, we will add a Menu and Title
Screen of sorts. You will create your own title, and style the text to make it
look nice. You will create three new buttons that set the difficulty of the
game. The higher the difficulty, the faster the targets spawn!

Project
Outcome:

Starting the game will open to a beautiful menu, with the title displayed
prominently and three difficulty buttons resting at the bottom of the screen.
Each difficulty will affect the spawn rate of the targets, increasing the skill
required to stop “good” targets from falling.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Store UI elements in a parent object to create Menus, UI, or HUD
- Add listeners to detect when a UI Button has been clicked
- Set difficulty by passing parameters into game functions like SpawnRate

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1lcT8pI28zC14zcUxbdFfwSk_F5EM4bgL5x7TFENkCZg/edit#heading=h.4uqbkjeyz8n7
https://docs.google.com/document/d/1lcT8pI28zC14zcUxbdFfwSk_F5EM4bgL5x7TFENkCZg/edit#heading=h.jpvf7062snkj

19

Step 1: Create Title text and menu buttons
The first thing we should do is create all of the UI elements we’re going to need. This includes a
big title, as well as three difficulty buttons.
1. Duplicate your Game Over text to create your Title

Text, editing its name, text and all of its attributes
2. Duplicate your Restart Button and edit its

attributes to create an “Easy Button” button
3. Edit and duplicate the new Easy button to create

a“Medium Button” and a “Hard Button”

- Tip: You can position the title and
buttons however you want, but you
should try to keep them central and
visible to the player

Step 2: Add a DifficultyButton script
Our difficulty buttons look great, but they don’t actually do anything. If they’re going to have
custom functionality, we first need to give them a new script.

1. For all 3 new buttons, in the Button component, in the On Click ()
section, click the minus (-) button to remove the RestartGame
functionality

2. Create a new DifficultyButton.cs script and attach it to all 3
buttons

3. Add using UnityEngine.UI to your imports
4. Create a new private Button button; variable and initialize it in

Start()

using UnityEngine.UI;

private Button button;

void Start() {
button = GetComponent<Button>(); }

© Unity 2021 Create with Code - Unit 5

20

Step 3: Call SetDifficulty on button click
Now that we have a script for our buttons, we can create a SetDifficulty method and tie that
method to the click of those buttons

1. Create a new void SetDifficulty function, and
inside it, Debug.Log(gameObject.name + " was
clicked");

2. Add the button listener to call the SetDifficulty
function

- New Function: AddListener
- Don’t worry: onClick.AddListener is

similar what we did in the inspector
with the Restart button

- Don’t worry: We’re just using Debug for
testing, to make sure the buttons are
working

void Start() {
button = GetComponent<Button>();
button.onClick.AddListener(SetDifficulty);

}

void SetDifficulty() {
Debug.Log(gameObject.name + " was clicked");

}

© Unity 2021 Create with Code - Unit 5

21

Step 4: Make your buttons start the game
The Title Screen looks great if you ignore the target objects bouncing around, but we have no
way of actually starting the game. We need a StartGame function that can communicate with
SetDifficulty.

1. In GameManager.cs, create a new public void StartGame()
function and move everything from Start() into it

2. In DifficultyButton.cs, create a new private GameManager
gameManager; and initialize it in Start()

3. In the SetDifficulty() function, call gameManager.startGame();

- Don’t worry: Title objects
don’t disappear yet - we’ll
do that next

GameManager.cs

void Start() { ... }

public void StartGame() {
isGameActive = true;
score = 0;
StartCoroutine(SpawnTarget());
UpdateScore(0);

}

DifficultyButton.cs

private GameManager gameManager;

void Start () {
...
gameManager = GameObject.Find("Game Manager").GetComponent<GameManager>();
}

void SetDifficulty() {
...
gameManager.StartGame();
}

© Unity 2021 Create with Code - Unit 5

22

Step 5: Deactivate Title Screen on StartGame
If we want the title screen to disappear when the game starts, we should store them in an
empty object rather than turning them off individually. Simply deactivating the single empty
parent object makes for a lot less work.

1. Right-click on the Canvas and Create > Empty Object, rename it “Title
Screen”, and drag the 3 buttons and title onto it

2. In GameManager.cs, create a new public GameObject titleScreen; and
assign it in the inspector

3. In StartGame(), deactivate the title screen object

public GameObject titleScreen;

StartGame() {
... titleScreen.gameObject.SetActive(false); }

Step 6: Use a parameter to change difficulty
The difficulty buttons start the game, but they still don’t change the game’s difficulty. The last
thing we have to do is actually make the difficulty buttons affect the rate that target objects
spawn.

1. In DifficultyButton.cs, create a new public int difficulty variable, then
in the Inspector, assign the Easy difficulty as 1, Medium as 2, and
Hard as 3

2. Add an int difficulty parameter to the StartGame() function
3. In StartGame(), set spawnRate /= difficulty;
4. Fix the error in DifficultyButton.cs by passing the difficulty parameter

to StartGame(difficulty)

- New Concept:
/= operator

public int difficulty;

void SetDifficulty() {
... gameManager.startGame(difficulty); }

<------>
public void StartGame(int difficulty) {

spawnRate /= difficulty; }

© Unity 2021 Create with Code - Unit 5

23

Lesson Recap
New
Functionality

● Title screen that lets the user start the game
● Difficulty selection that affects spawn rate

New Concepts
and Skills

● AddListener()
● Passing parameters between scripts
● Divide/Assign (/=) operator
● Grouping child objects

© Unity 2021 Create with Code - Unit 5

24

Challenge 5
Whack-a-Food

Challenge
Overview:

Put your User Interface skills to the test with this whack-a-mole-like challenge
in which you have to get all the food that pops up on a grid while avoiding the
skulls. You will have to debug buttons, mouse clicks, score tracking, restart
sequences, and difficulty setting to get to the bottom of this one.

Challenge
Outcome:

- All of the buttons look nice with their text properly aligned
- When you select a difficulty, the spawn rate changes accordingly
- When you click a food, it is destroyed and the score is updated in the

top-left
- When you lose the game, a restart button appears that lets you play again

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Working with text and button objects to get them looking the way you want
- Using Unity’s various mouse-related methods appropriately
- Displaying variables on text objects properly using concatenation
- Activating and deactivating objects based on game states
- Passing information between scripts using custom methods and

parameters

Challenge
Instructions:

- Open your Prototype 5 project
- Download the "Challenge 5 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 5 > Instructions folder, use the

"Challenge 5 - Outcome” video as a guide to complete the challenge

© Unity 2021 Create with Code - Unit 5

25

Challenge Task Hint

1 The difficulty buttons
look messy

Center the text on the buttons
horizontally and vertically

If you expand one of the button
objects in the hierarchy, you’ll see a
“Text” object inside - you have to edit
the properties of that “Text” object

2 The food is being
destroyed too soon

The food should only be
destroyed when the player
clicks on it, not when the
mouse touches it

OnMouseEnter() detects when the
mouse enters an object’s collider -
OnMouseDown() detects when the
mouse clicks on an object’s collider

3 The Score is being
replaced by the word
“score”

It should always say,
“Score: __“ with the value
displayed after “Score:”

When you set the score text, you have
to add (concatenate) the word
“Score: “ and the actual score value

4 When you lose, there’s
no way to Restart

Make the Restart button
appear on the game over
screen

In the GameOver() method, make
sure the restart button is being
reactivated

5 The difficulty buttons
don’t change the
difficulty

The spawnRate is always
way too fast. When you click
Easy, the spawnRate should
be slower - if you click Hard,
the spawnRate should be
faster.

There is no information (or
parameter) being passed from the
buttons’ script to the Game
Manager’s script - you need to
implement a difficulty parameter

Bonus Challenge Task Hint

X The game can go on
forever

Add a “Time: __” display that
counts down from 60 in
whole numbers (i.e. 59, 58,
57, etc) and triggers the
game over sequence when it
reaches 0.

Google, “Unity Count down timer C#”.
It will involve subtracting
“Time.deltaTime” and using the
Mathf.Round() method to display only
whole numbers.

© Unity 2021 Create with Code - Unit 5

26

Challenge Solution

1 Expand each of the “Easy”, “Medium”, and “Hard” buttons to access their “Text” object
properties, then select the horizontal and vertical alignment buttons in the “Paragraph”
properties

2 In TargetX.cs, change OnMouseEnter() to OnMouseDown()

private void OnMouseEnter Down() {

3 In GameManagerX.cs, in UpdateScore(), concatenate the word “Score: “ with the score
value:

public void UpdateScore(int scoreToAdd) {

score += scoreToAdd;

scoreText.text = "score" "Score: " + score;

}

4 In GameManagerX.cs, in GameOver(), change SetActive(false) to “true”

public void GameOver() {

gameOverText.gameObject.SetActive(true);

restartButton.gameObject.SetActive(false true);

...

}

5 In GameManagerX.cs, in StartGame(), add an “int difficulty” parameter and divide the
spawnRate by it. Then in DifficultyButtonX.cs, in SetDifficulty(), pass in the “difficulty”
value from the buttons.

GameManagerX.cs
public void StartGame(int difficulty){

spawnRate /= 5 difficulty;

...

}

DifficultyButtonX.cs
void SetDifficulty() {

...

gameManagerX.StartGame(difficulty);

}

© Unity 2021 Create with Code - Unit 5

27

Bonus Challenge Solution

X1 Duplicate the “Score Text” object in the hierarchy to create a new “Timer text” object, then in
GameManagerX.cs declare a new TextMeshProUGUI timerText variable and assign it in the
inspector

X2 In GameManagerX.cs, in StartGame(), set your new timerText variable to your starting time

public void StartGame(int difficulty) {

...

timeLeft = 60;

}

X3 In GameManagerX.cs, add an Update() function that, if the game is active, subtracts from the
timeLeft and sets the timerText to a rounded version of that timeLeft. Then, if timeLeft is less
than zero, calls the game over method.

private void Update() {

if (isGameActive) {

timeLeft -= Time.deltaTime;

timerText.SetText("Time: " + Mathf.Round(timeLeft));

if (timeLeft < 0) {

GameOver();

}

}

}

© Unity 2021 Create with Code - Unit 5

28

Unit 5 Lab
Swap out your Assets
Steps:
Step 1: Import and browse the asset library

Step 2: Replace player with new asset

Step 3: Browse the Asset store

Step 4: Replace all non-player primitives

Step 5: Replace the background texture

Example of progress by end of lab

Length: 90 minutes

Overview: In this lab, you will finally replace those boring primitive objects with beautiful
dynamic ones. You will either use assets from the provided course library or
browse the asset store for completely new ones to give your game exactly
the look and feel that you want. Then, you will go through the process of
actually swapping in those new assets in the place of your placeholder
primitives. By the end of this lab, your project will be looking a lot better.

Project
Outcome:

All primitive objects are replaced by actual 3D models, retaining the same
basic gameplay functionality.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Browse the asset store to find the perfect assets for your project
- Use Nested Prefabs to swap out placeholder objects with real assets
- Adjust material settings to get the resolution and look you want

© Unity 2021 Create with Code - Unit 5

29

Step 1: Import and browse the asset library
If we are going to swap out our primitive shapes with cool new assets, we need to import those
assets first.

1. Click to download the Course Library assets,
extract the compressed folder, and then import
the .unitypackage into your project.
If you forget how to do this, refer to Lesson 1.1,
step 2.

2. Browse through the library to find the assets you
would like to replace your Player and non-player
objects with

- Don’t worry: It will take longer than
normal to import these files because it’s
a lot more files

- Don’t worry: Even if you don’t think you’re
going to use one of these assets for your
player, just choose something for now to
get used to the process

Step 2: Replace player with new asset
Now that we have the assets ready to go, the first thing we’ll do is replace the Player object
1. Drag the Player object into the “Prefabs” folder to make it

a prefab, then double-click on it to open the prefab editor
2. Drag the asset you want into the hierarchy to make it a

nested prefab of the Player, then scale and position it so
that it is around the same size and location

3. On the parent Player object itself, either Edit the collider to
be the size of the new asset or replace it with a different
type of collider (e.g. Box)

4. Test testing to make sure it works, then uncheck the
Mesh Renderer component of the primitive

- New: Nested Prefabs
- Tip: Notice how the asset

updates automatically in game
view

- Tip: Isometric view is useful
when resizing and
repositioning child objects

© Unity 2021 Create with Code - Unit 5

https://connect-prd-cdn.unity.com/20210506/f5f470b5-a319-426b-b459-1033840b49ca/Create%20with%20Code%20-%20Course%20Library.zip?_ga=2.19325944.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

30

Step 3: Browse the Asset store
Even though we have a really great asset library, there may be certain assets you want that
aren’t in there. In that case, it might be good to try and find assets in the Unity Asset Store.

1. Click to open the Unity Asset Store
2. In the search bar, search for “Synty Studios” or “Low

Poly”, then browse some of the assets
3. In the Pricing filter, check “Free Assets” to only view

free options, or use the Ratings filter to only see
highly reviewed assets.

4. If you find an asset you want to include in your
project, select Add to My Assets, then Open in Unity.
This should automatically open the Package
Manager window in Unity.

5. In the top-left corner of the Package Manager, use
the drop-down to view Packages: My Assets, then
locate your new asset in the list and click Download,
then Import.

6. Drag the imported assets into a new folder called
“Asset Store”, then browse through the imported
assets.

- Warning: This will only be possible if
you can sign into a Unity account

- Explain: The assets for this course
were made by Synty Studios, which
are really good - as you can see, you
normally have to pay for them

- New: Unity Asset Store
- New: “Low Poly” assets
- Warning: Only download “Low Poly”

assets or your project will become
huge, then not web- or
mobile-friendly

- Don’t worry: Even if you think you
have all the assets you need, it’s still
good to take a look

Step 4: Replace all non-player primitives
Now that we know the basic concept of our project, let’s figure out how we’ll get it done.

1. Repeat the process you used to replace the player
prefab with your other non-player objects

2. Test to make sure everything is working as expected

- Warning: Make sure that, if you are
editing prefabs in the scene, to
Override any changes you make

© Unity 2021 Create with Code - Unit 5

https://assetstore.unity.com/

31

Step 5: Replace the background texture
Now that our dynamic objects have a new look, we should update the ground / background too.

1. From the Course Library > Textures, (or from a Unity
Asset Store package), drag a new material onto the
Ground / Background object

2. To adjust the material’s resolution, in the Material
properties (with the sphere next to it), change the
Main Map Tiling X and Y values

3. To make the material less shiny, in the Material
properties, uncheck the “Specular highlights” and
“Reflections” settings

- Tip: You might want to adjust the
resolution/tiling of the material,
depending on the scale of the
objects

- Tip: Natural ground materials like
grass or dirt do not tend to show
highlights or reflections

Lesson Recap
New Progress ● Primitive objects replaced with new assets that function the same way

New Concepts
and Skills

● Art workflow
● High vs. Low Poly
● Asset Store
● Nested Prefabs
● Material properties

© Unity 2021 Create with Code - Unit 5

32

Quiz Unit 5
QUESTION CHOICES

1 Which of the following follows Unity naming conventions
(especially as they relate to capitalization)?

a. Line 1
b. Line 2
c. Line 3
d. Line 41. public void MultiplyScore(int currentScore) { }

2. public void multiplyScore(int CurrentScore) { }

3. public Void MultiplyScore(Int currentScore) { }

4. public Void MultiplyScore(int CurrentScore) { }

2 If there is a boolean in script A that you want to access
in script B, which of the following are true:

a. 1 only
b. 1 and 2 only
c. 2 and 3 only
d. 3 and 4 only
e. 1, 2, and 3 only
f. All are true

1. You need a reference to script A in script B
2. The boolean needs to be public instead of private
3. The boolean must be true
4. The boolean must be included in the Update method

3 Which code to fill in the blank will result in the object
being destroyed?

a. name = “player” &&
isDead && health < 5

b. name != “player”
&& isDead != true && health > 5

c. name == “player” && !isDead
&& health < 5

d. name == “player” && isDead !=
true && health > 5

string name = “player”
bool isDead;
float health = 3;

if (________________) {
Destroy(gameObject);

}

© Unity 2021 Create with Code - Unit 5

33

4 You run your game and get the following error message
in the console, “NullReferenceException: Object
reference not set to an instance of an object”. Given the
image and code below, what would resolve the problem?

a. In the hierarchy, rename “Game
Manager” to “gameManager”

b. In the hierarchy, rename “Game
Manager” as “GameManager”

c. On Line 1, rename
“GameManager” as “Game
Manager”

d. On Line 3, remove the
GetComponent code

1. private GameManager gameManager;
2. void Start() {
3. gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();
4. }

5 Read the Unity documentation below about the
OnMouseDrag event and the code beneath it. What will
the value of the “counter” variable be if the user clicked
and held down the mouse over an object with a collider
for 10 seconds?

a. 0
b. 1
c. 99
d. 100
e. A value over 100

int counter = 0;

void OnMouseDrag() {

if (counter < 100) {

counter++;

}

}

© Unity 2021 Create with Code - Unit 5

34

6 Based on the code below, what will be displayed in the
console when the button is clicked?

a. “Welcome, Robert Smith”
b. “Welcome, firstName Smith”
c. “Button is ready”
d. “Welcome + Robert + Smith”

private Button button;
private string firstName = "Robert";

void Start() {
button = GetComponent<Button>();
button.onClick.AddListener(DisplayWelcomeMessage);
Debug.Log("Button is ready");

}

void DisplayWelcomeMessage() {
Debug.Log("Welcome, " + "firstName" + " Smith");

}

7 You have declared a new Button variable as “private
Button start;”, but there’s an error under the word
“Button” that says “error CS0246: The type or
namespace name 'Button' could not be found (are you
missing a using directive or an assembly reference?)”
What is likely causing that error?

a. You can’t name a button “start”
because that’s the name of a
Unity Event Function

b. “Button” should be lowercase
“button”

c. You are missing “using
UnityEngine.UI;” from the top of
your class

d. New Button variables must be
made public

8 Look at the documentation and code below. Which of
the following lines would NOT produce an error?

a. Line 5
b. Line 6
c. Line 7
d. Line 8

© Unity 2021 Create with Code - Unit 5

35

1. public Vector3 explosion;

2. Vector3 startPos;

3. float startSpeed;

4. void Start {

5. AddForceAtPosition(50, 0, ForceMode.Impulse)

6. AddForceAtPosition(100, startPos, ForceMode.Impulse)

7. AddForceAtPosition(startSpeed, startPos, ForceMode.Impulse)

8. AddForceAtPosition(explosion, new Vector3(0, 0, 0), ForceMode.Impulse)

9. }

9 If you wanted a button to display the message, “Hello!”
when a button was clicked, what code would you use to
fill in the blank?

a. (SendMessage);
b. (SendMessage(“Hello”));
c. (SendMessage(string Hello));
d. (SendMessage(Hello));

private Button button;

void Start {

button = GetComponent<Button>();

button.onClick.AddListener________________;

}

void SendMessage() {

Debug.Log(”Hello!”);

}

10 Which of the following is the correct way to declare a
new List of game objects named “enemies”?

a. Line 1
b. Line 2
c. Line 3
d. Line 41. public List[GameObjects] enemies;

2. public List(GameObject) "enemies";

3. public List<GameObjects> "enemies";

4. public List<GameObject> enemies;

© Unity 2021 Create with Code - Unit 5

36

Quiz Answer Key
ANSWER EXPLANATION

1 A public void MultiplyScore(int currentScore)
The “public”, “void”, and “int” keywords should be lowercase. Method names
(like “MultiplyScore”) should be Title Case. variable names (like
“currentScore”) should be camelCase.

2 B You always need a variable reference to the script you’re trying to access and
that variable must be public.

3 C To compare a string, two ==’s are needed. By default, booleans are false
unless declared as true and adding an exclamation mark before !isDead
checks that it’s false. Since health = 3, checking “health < 5” is true.

4 B GameObject.Find("GameManager") is returning a NullReferenceException
error because there’s no object in the scene named that. If you renamed the
“Game Manager” in the hierarchy to have no spaces, it would be fixed.

5 D Since the function is called “every frame” the mouse is held, it will be called
hundreds of times in 10 seconds. However, the condition will only be true if
the counter is less than 99, meaning it will no longer increase after 100.

6 B If you wanted it to say “Robert Smith”, you would have needed to use the
variable name, firstName, without quotation marks.

7 C In order to use some of the UI classes like “Button,” you need to include the
“UnityEngine.UI” library

8 D The first two required parameters are Vector3 variables. Only option D uses
Vector3 variables for those parameters.

9 A SendMessage does not require any parameters - it prints “Hello” no matter
what when it is called. Also, when adding a listener, you just need to include
the method’s name - no parentheses are required.

10 D public List<GameObject> enemies is correct. <GameObject> should be in
angle brackets. You don’t need “GameObject” to be plural because it’s the
type of object it is. Variable names are never declared with quotation marks
around them.

© Unity 2021 Create with Code - Unit 5

37

Bonus Features 5 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 5

38

Step 1: Overview
This tutorial outlines four potential bonus features for the Quick Click Prototype at varying levels of
difficulty:

● Easy: Lives UI
● Medium: Music volume
● Hard: Pause menu
● Expert: Click-and-swipe

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 5

39

Step 2: Easy: Lives UI
Create a "Lives" UI element that counts down by 1 when an object leaves the bottom of the screen
and triggers Game Over when Lives reaches 0.

Step 3: Medium: Music volume
Add background music and a UI Slider element to adjust the volume.
Background music adds a lot of energy to a game, but not everyone likes it, so it’s good to give
people the option to lower the volume.

© Unity 2021 Create with Code - Unit 5

40

Step 5: Hard: Pause menu
During gameplay, allow the user to press a key to toggle between pausing and resuming the game,
where a pause screen comes up while the game is paused.

Step 6: Expert: Click-and-swipe
Program click-and-swipe functionality instead of clicking, generating a trail where the mouse has
been dragged. This does make the game easier, so you might also want to increase the gameplay
difficulty on all levels if you implement this.

© Unity 2021 Create with Code - Unit 5

41

Step 7: Hints and solution walkthrough
Hints:

● Easy: Lives UI
○ Try using a Text GameObject like we did for the score

● Medium: Music volume
○ Try using the event on the Slider element

● Hard: Pause menu
○ Try using Time.timeScale

● Expert: Click-and-swipe
○ Camera.ScreenToWorldPoint will help convert a screen space position to world

position

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 5

https://connect-prd-cdn.unity.com/20210505/3181b77f-2009-4506-ae6b-10beabc23d3c/Unit%205%20-%20Bonus%20Features%20and%20Solution.pdf?_ga=2.259926218.1186801097.1620052249-59568313.1601905412

1

Create with Code
Unit 6 Lesson Plans

© Unity 2021 Create with Code - Unit 6

2

6.1 Project Optimization

Techniques:
1: Variable attributes

2: Unity Event Functions

3: Object Pooling

Length: 30 minutes

Overview: In this lesson, you will learn about a variety of different techniques to
optimize your projects and make them more performant. You may not notice
a huge difference in these small prototype projects, but when you’re
exporting a larger project, especially one for mobile or web, every bit of
performance improvement is critical.

Project
Outcome:

Several of your prototype projects will have improved optimization, serving
as examples for you to implement in your personal projects

Learning
Objectives:

By the end of this lesson, you will be able to:
- Recognize and use new variable attributes to keep values private, but still

editable in the inspector
- Use the appropriate Unity Event Functions (e.g. Update vs. FixedUpdate vs.

LateUpdate) to make your project run as smoothly as possible
- Understand the concept of Object Pooling, and appreciate when it can be

used to optimize your project

© Unity 2021 Create with Code - Unit 6

3

1: Variable attributes
In the course, we only ever used “public” or “private” variables, but there are a lot of other variable
attributes you should be familiar with.
1. Open your Prototype 1 project and open the

PlayerController.cs script
2. Replace the keyword “private” with [SerializeField],

then edit the values in the inspector
3. In FollowPlayer.cs, add the [SerializeField] attribute to

the Vector3 offset variable
4. Try applying the “readonly”, “const”, or “static”

attributes, noticing that all have the effect of removing
the variable from the inspector

- New Concept: using [SerializeField]
instead of public attribute

- Tip: “protected” is very similar to
“private”, but would also allow
access to derived classes

[SerializeField] private float speed = 30.0f;

[SerializeField] private float turnSpeed = 50.0f;

[SerializeField] private Vector3 offset = new Vector3(0, 5, -7);

2: Unity Event Functions
In the course we only ever used the default Update() and Start() event functions, but there are others
you might want to use in different circumstances.
1. Duplicate your main Camera, rename it “Secondary

Camera”, then deactivate the Main Camera
2. Reposition the Secondary camera in a first-person view,

then edit the offset variable to match that position
3. Run your project and notice how choppy it is
4. In PlayerController.cs, change “Update” to

“FixedUpdate”, and in FollowPlayer.cs, change “Update”
to “LateUpdate”, then test again

5. Delete the Start() function in both scripts, then
reactivate your Main Camera

- New Concept: “Event Functions”
are Unity’s default methods that
run in a very particular order over
the life of a script (e.g. Start and
Update)

- New Concept: Update vs
FixedUpdate vs LateUpdate

- New Concept: Awake vs Start
- Tip: If you’re not using Start or

Update, it’s cleaner to delete them

PlayerController.cs

void FixedUpdate() { ...

FollowPlayer.cs

void LateUpdate() { ...

© Unity 2021 Create with Code - Unit 6

4

3: Object Pooling
Throughout the course, we’ve created a lot of prototypes that instantiated and destroyed objects during
gameplay, but there’s actually a more performant / efficient way to do that called Object Pooling.

1. Open Prototype 2 and create a backup
2. Download the Object Pooling unity

package and import it into your scene
3. Reattach the PlayerController script to

your player and reattach the
DetectCollisions script to your animal
prefabs (not to your food prefab)

4. Attach the ObjectPooler script to your
Spawn Manager, drag your projectile into
the “Objects To Pool” variable, and set
the “Amount To Pool” to 20

5. Run your project and see how the
projectiles are activated and deactivated

- Warning: You will be overwriting your old work
with this new system, so it’s important to make a
backup first in case you want to revert back

- New Concept: Object Pooling: creating a
reusable “pool” of objects that can be activated
and deactivated rather than instantiated and
destroyed, which is much more performant

- Tip: Try reading through the new code in the
ObjectPooler and PlayerController scripts

- Don’t worry: If your project is small enough that
you’re not experiencing any performance issues,
you probably don’t have to implement this

Lesson Recap
New Concepts
and Skills

● Optimization
● Serialized Fields
● readonly / const / static / protected
● Event Functions
● FixedUpdate() vs. Update() vs. LateUpdate()
● Awake() vs. Start()
● Object Pooling

© Unity 2021 Create with Code - Unit 6

5

6.2 Research and Troubleshooting

Steps:
Step 1: Make the vehicle use forces

Step 2: Prevent car from flipping over

Step 3: Add a speedometer display

Step 4: Add an RPM display

Step 5: Prevent driving in mid-air

Example of project by end of lesson

Length: 75 minutes

Overview: In this lesson, you will attempt to add a speedometer and RPM display for
your vehicle in Prototype 1. In doing so, you will learn the process of doing
online research when trying to implement new features and troubleshoot
bugs in your projects. As you will find out, adding a new feature is very rarely
as simple as it initially seems - you inevitably run into unexpected
complications and errors that usually require a little online research. In this
lesson, you will learn how to do that so that you can do it with your own
projects.

Project
Outcome:

By the end of this lesson, the vehicle will behave with more realistic physics,
and there will be a speedometer and Revolution per Minute (RPM) display.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use Unity Forums, Unity Answers, and the online Unity Scripting

Documentation to implement new features and troubleshoot issues with
your projects

© Unity 2021 Create with Code - Unit 6

6

Step 1: Make the vehicle use forces
If we’re going to implement a speedometer, the first thing we have to do is make the vehicle accelerate
and decelerate more like a real car, which uses forces - as opposed to the Translate method.
1. Open your Prototype 1 project and make a backup
2. Replace the Translate call with an AddForce call on

the vehicle’s Rigidbody, renaming the “speed” variable
to “horsePower”

3. Increase the horsePower to be able to actually move
the vehicle

4. To make the vehicle move in the appropriate direction,
change AddForce to AddRelativeForce

- New Concept: using Unity
Documentation

- New Concept: using Unity Answers
- New Concept: AddRelativeForce
- Don’t worry: Still a big issue where

the vehicle can drive in air and that
it flips over super easily!

[SerializeField] private Rigidbody playerRb;

void Start() {

playerRb = GetComponent<Rigidbody>();

}

void FixedUpdate() {

transform.Translate(Vector3.forward * speed * verticalInput);

playerRb.AddRelativeForce(Vector3.forward * verticalInput * horsePower);

}

© Unity 2021 Create with Code - Unit 6

7

Step 2: Prevent car from flipping over
Now that we’ve implemented real physics on the vehicles, it is very easy to overturn. We need to figure
out a way to make our vehicle safer to drive.
1. Add wheel colliders to the wheels of your vehicle and

edit their radius and center position, then disable any
other colliders on the wheels

2. Create a new GameObject centerOfMass variable, then
in Start(), assign the playerRb variable to the
centerOfMass position

3. Create a new Empty Child object for the vehicle called
“Center Of Mass”, reposition it, and assign it to the
Center Of Mass variable in the inspector

4. Test different center of mass positions, speed, and
turn speed values to get the car to steer as you like

- New Concept: Wheel colliders
- New Concept: Center of Mass
- Don’t Worry: We can still drive the

vehicle when it’s sideways or
upside down

- Warning: This is still not the proper
way to do vehicles - should actually
be rotating / turning the wheels

[SerializeField] GameObject centerOfMass;

void Start() {

playerRb.centerOfMass = centerOfMass.transform.position;

}

Step 3: Add a speedometer display
Now that we have our vehicle in a semi-drivable state, let’s display the speed on the User Interface.

1. Add a new TextMeshPro - Text object for your “Speedometer Text”
2. Import the TMPro library, then create and assign new create a

new TextMeshProUGUI variable for your speedometerText
3. Create a new float variables for your speed
4. In Update(), calculate the speed in mph or kph then display those

values on the UI

- Warning: Will be going
fast through adding
the text, since we did
this in prototype 5

- New Concept:
RoundToInt

using TMPro;

[SerializeField] TextMeshProUGUI speedometerText;

[SerializeField] float speed;

private void Update() {

speed = Mathf.Round(playerRb.velocity.magnitude * 2.237f); // 3.6 for kph

speedometerText.SetText("Speed: " + speed + "mph");

}

© Unity 2021 Create with Code - Unit 6

8

Step 4: Add an RPM display
One other cool feature that a lot of car simulators have is a display of the RPM (Revolutions per Minute)
- the tricky part is figuring out how to calculate it.

1. Create a new “RPM Text” object, then create and
assign a new rpmText variable for it

2. In Update(), calculate the the RPMs using the
Modulus/Remainder operator (%), then display that
value on the UI

- New Concept: Modulus / Remainder
(%) operator

[SerializeField] TextMeshProUGUI rpmText;

[SerializeField] float rpm;

private void Update() {

rpm = Mathf.Round((speed % 30)*40);

rpmText.SetText("RPM: " + rpm);

}

© Unity 2021 Create with Code - Unit 6

9

Step 5: Prevent driving in mid-air
Now that we have a mostly functional vehicle, there’s one other big bug we should try to fix: the car can
still accelerate/decelerate, turn, and increase in speed/rpm in mid-air!

1. Declare a new List of WheelColliders named allWheels (or
frontWheels/backWheels), then assign each of your wheels
to that list in the inspector

2. Declare a new int wheelsOnGround
3. Write a bool IsOnGround() method that returns true if all

wheels are on the ground and false if not
4. Wrap the acceleration, turning, and speed/rpm functionality

in if-statements that check if the car is on the ground

- New Concept: looping
through lists

- New Concept: custom
methods with bool returns

- Tip: if you use frontWheels or
backWheels, make sure you
only drag in two wheels and
only test that
wheelsOnGround == 2

[SerializeField] List<WheelCollider> allWheels;

[SerializeField] int wheelsOnGround;

if (IsOnGround()) {[ACCELERATION], [ROTATION], [SPEED/RPM]}

bool IsOnGround () {

wheelsOnGround = 0;

foreach (WheelCollider wheel in allWheels) {

if (wheel.isGrounded) {

wheelsOnGround++;

}

}

if (wheelsOnGround == 4) {

return true;

} else {

return false;

}

}

Lesson Recap
New Concepts
and Skills

● Searching on Unity Answers, Forum, Scripting API
● Troubleshooting to resolve bugs
● Center of Mass, AddRelativeForce, RoundToInt
● Modulus/Remainder (%) operator
● Looping through lists
● Custom methods with bool return

© Unity 2021 Create with Code - Unit 6

10

6.3 Sharing your Projects

Steps:
Step 1: Install export Modules

Step 2: Build your game for Mac or Windows

Step 3: Build your game for WebGL

Example of project by end of lesson

Length: 30 minutes

Overview: In this lesson, you will learn how to build your projects so that they’re
playable outside of the Unity interface. First, you will install the necessary
export modules to be able to publish your projects. After that, you will build
your project as a standalone app to be played on Mac or PC computers.
Finally, you will export your project for WebGL and even upload it to a game
sharing site so that you can send it to your friends and family.

Project
Outcome:

Your project will be exported and playable as a standalone app on Mac/PC or
for embedding online.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Add and manage export modules for your Unity installs so you can choose

which platforms to build for
- Build your projects for Mac or PC so they can be played as standalone apps
- Build your projects for WebGL so they can be uploaded and embedded

online and shared with a single URL

© Unity 2021 Create with Code - Unit 6

11

Step 1: Install export Modules
Before we can export our projects, we need to add the “Export Modules” that will allow us to export for
particular platforms.
1. Open Unity Hub and navigate to the Installs Tab
2. On the Unity version you’ve been using in the course,

select Add Modules.
3. Select WebGL Build Support, and either Mac or

Windows build support, then click Done and wait for
the installation to complete

- Tip - Mac and Windows will create
apps for your computer and WebGL
will allow you to publish online

- Tip - you should see little icons
appear when it is complete

- Tip - WebGL is nice because you
can more easily share it online and
it is platform-independent

© Unity 2021 Create with Code - Unit 6

12

Step 2: Build your game for Mac or Windows
Now that we have the export modules installed, we can put them to use and export one of our projects
1. Open the project you would like to build (could be a

prototype or your personal project)
2. In Unity, click File > Build Settings, then click Add

Open Scenes to add your scene
3. Click Player Settings and adjust any settings you

want, including making it “Windowed”, “Resizable”,
and whether or not you want to enable the “Display
Resolution Dialog”.
For more information, check out the documentation
on configuring player settings.

4. Click Build, name your project, and save it inside a
new folder inside your Create with Code folder called
“Builds”

5. Play your game to test it out, then if you want, rebuild
it with different settings

- Don’t worry - a prototype that’s not
fully playable will be problematic
when you share it because the user
will have to close and reopen it to
play it again, but that’s OK for now

- Tip - since it’s just a mini-game, it
might be better to use “Windowed”
- this also allows the player to more
easily exit since we don’t have a full
UI to do that

- Don’t worry - on Windows, you have
an .exe file and a Data folder - on
Mac, you just have a .app file

- Warning - it’s kind of hard to
distribute these as is because
most email clients are cautious of
executables like this

© Unity 2021 Create with Code - Unit 6

https://docs.unity3d.com/Manual/class-PlayerSettingsStandalone.html
https://docs.unity3d.com/Manual/class-PlayerSettingsStandalone.html

13

Step 3: Build your game for WebGL
Since it is pretty hard to distribute your games on Mac or Windows, it’s a good idea to make your
projects available online by building for WebGL.
1. Reopen the Build Settings menu, select WebGL,

then click Switch Platform.
Note: you will only be able to do this if you have
installed the WebGL Build Support export module

2. Click Build, then save in your “Builds” folder with “
- WebGL” in the name

3. Try clicking on index.html to run your project (you
may have to try opening with different browsers)

4. Right-click on your WebGL build folder and
Compress/Zip it into a .zip file

5. If you want, upload it to a game sharing site like
Unity Play or itch.io.

- Warning - it’s easy to forget to click
“Switch platform” and can be confusing

- Don’t worry - building for WebGL can
take a long time

- Warning - some browsers do not
support opening WebGL programs from
your computer

- Tip - If uploading your game to a site
like itch.io, make sure to choose
“HTML” format and to “Play in browser”

© Unity 2021 Create with Code - Unit 6

https://play.unity.com/
https://itch.io/

14

Lesson Recap
New Concepts
and Skills

● Installing export modules
● Building for Mac/PC
● Building for WebGL/HTML

© Unity 2021 Create with Code - Unit 6

